-
1
-
-
0001847776
-
Efficient control of the dependency problem based on Taylor model methods
-
K. Makino and M. Berz. Efficient control of the dependency problem based on Taylor model methods. Reliable Computing, 5(1):3-12, 1999.
-
(1999)
Reliable Computing
, vol.5
, Issue.1
, pp. 3-12
-
-
Makino, K.1
Berz, M.2
-
2
-
-
0345371405
-
Taylor models and other validated functional inclusion methods
-
K. Makino and M. Berz. Taylor models and other validated functional inclusion methods. International Journal of Pure and Applied Mathematics, 6,3:239-316, 2003, available at http://bt.pa.msu.edu/pub.
-
(2003)
International Journal of Pure and Applied Mathematics
, vol.6
, Issue.3
, pp. 239-316
-
-
Makino, K.1
Berz, M.2
-
3
-
-
0000329979
-
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models
-
M. Berz and K. Makino. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing, 4(4):361-369, 1998.
-
(1998)
Reliable Computing
, vol.4
, Issue.4
, pp. 361-369
-
-
Berz, M.1
Makino, K.2
-
4
-
-
0004147602
-
-
PhD thesis, Michigan Slate University, East Lansing, Michigan, USA. Also MSUCL-1093
-
K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis, Michigan Slate University, East Lansing, Michigan, USA, 1998. Also MSUCL-1093.
-
(1998)
Rigorous Analysis of Nonlinear Motion in Particle Accelerators
-
-
Makino, K.1
-
6
-
-
0006287995
-
Perturbative equations of motion and differential operators in non-planar curvilinear coordinates
-
K. Makino and M. Berz. Perturbative equations of motion and differential operators in non-planar curvilinear coordinates. International Journal of Applied Mathematics, 3,4:421-440, 2000.
-
(2000)
International Journal of Applied Mathematics
, vol.3
, Issue.4
, pp. 421-440
-
-
Makino, K.1
Berz, M.2
-
7
-
-
0006381161
-
Preservation of canonical structure in nonplanar curvilinear coordinates
-
M. Berz and K. Makino. Preservation of canonical structure in nonplanar curvilinear coordinates. International Journal of Applied Mathematics, 3,4:401-419, 2000.
-
(2000)
International Journal of Applied Mathematics
, vol.3
, Issue.4
, pp. 401-419
-
-
Berz, M.1
Makino, K.2
-
8
-
-
0000658111
-
Arbitrary order description of arbitrary particle optical systems
-
M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear Instruments and Methods, A298:426, 1990.
-
(1990)
Nuclear Instruments and Methods
, vol.A298
, pp. 426
-
-
Berz, M.1
-
9
-
-
33745320476
-
Suppression of the wrapping effect by Taylor model based validated integrators
-
submitted
-
K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model based validated integrators, submitted. Also MSUHEP-40910, available at http://bt.pa.msu.edu/pub.
-
MSUHEP-40910
-
-
Makino, K.1
Berz, M.2
-
10
-
-
0000466527
-
Enclosing the solutions of ordinary initial and boundary value problems
-
E. Kaucher, U. Kulisch, and C. Ullrich, editors. Teubner, Stuttgart
-
R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. In E. Kaucher, U. Kulisch, and C. Ullrich, editors, Computer Arithmetic: Scientific Computation and Programming Languages, pages 255-286. Teubner, Stuttgart, 1987.
-
(1987)
Computer Arithmetic: Scientific Computation and Programming Languages
, pp. 255-286
-
-
Lohner, R.J.1
-
13
-
-
33745289983
-
The method of shrink wrapping for the validated solution of ODEs
-
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
-
K. Makino and M. Berz. The method of shrink wrapping for the validated solution of ODEs. Technical Report MSUHEP-20510, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, 2002.
-
(2002)
Technical Report
, vol.MSUHEP-20510
-
-
Makino, K.1
Berz, M.2
-
14
-
-
1042300822
-
Monotonically convergent numerical two-sided, bounds for a differential birth and death process
-
K. Nickel, editor, Interval Mathematics, Berlin; New York. Springer-Verlag
-
W. F. Ames and E. Adams. Monotonically convergent numerical two-sided, bounds for a differential birth and death process. In K. Nickel, editor, Interval Mathematics, volume 29 of Lecture Notes in Computer Science, pages 135-140, Berlin; New York, 1975. Springer-Verlag.
-
(1975)
Lecture Notes in Computer Science
, vol.29
, pp. 135-140
-
-
Ames, W.F.1
Adams, E.2
|