메뉴 건너뛰기




Volumn , Issue , 2005, Pages 2993-2996

Multi-task learning strategies for a recurrent neural net in a hybrid tied-posteriors acoustic model

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC PROPERTIES; MARKOV PROCESSES; MATHEMATICAL MODELS; NEURAL NETWORKS; PERSONNEL TRAINING; PROBABILITY; SPEECH RECOGNITION;

EID: 33745216217     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (10)
  • 3
    • 0033692963 scopus 로고    scopus 로고
    • Tied posteriors: An approach for effective introduction of context dependency in hybrid NN/HMM LVCSR
    • Istanbul, Turkey, June
    • Jörg Rottland and Gerhard Rigoll, "Tied Posteriors: An Approach for Effective Introduction of Context Dependency in Hybrid NN/HMM LVCSR," in IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Istanbul, Turkey, June 2000.
    • (2000) IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP)
    • Rottland, J.1    Rigoll, G.2
  • 5
    • 85009167968 scopus 로고    scopus 로고
    • Multitask learning in connectionist robust ASR using recurrent neural networks
    • Geneva, Switzerland, Sept.
    • Shahla Parveen and Phil Green, "Multitask Learning in Connectionist Robust ASR using Recurrent Neural Networks," in European Conference on Speech Communication and Technology, Geneva, Switzerland, Sept. 2003, pp. 1813-1816.
    • (2003) European Conference on Speech Communication and Technology , pp. 1813-1816
    • Parveen, S.1    Green, P.2
  • 6
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • Mar.
    • A. J. Robinson, "An Application of Recurrent Nets to Phone Probability Estimation," IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 298-305, Mar. 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1
  • 7
    • 0029023603 scopus 로고
    • Recurrent neural networks can be trained to be maximum a posteriori probability classifiers
    • S. Santini and A. Del Bimbo, "Recurrent neural networks can be trained to be maximum A posteriori probability classifiers," Neural Networks, vol. 8, no. 1, pp. 25-29, 1995.
    • (1995) Neural Networks , vol.8 , Issue.1 , pp. 25-29
    • Santini, S.1    Del Bimbo, A.2
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Rich Caruana, "Multitask Learning," Machine Learning, no. 28, pp. 41-75, 1997.
    • (1997) Machine Learning , Issue.28 , pp. 41-75
    • Caruana, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.