메뉴 건너뛰기




Volumn 69, Issue 13-15, 2006, Pages 1674-1677

An iterative algorithm for entropy regularized likelihood learning on Gaussian mixture with automatic model selection

Author keywords

Gaussian mixture; Model selection; Regularization theory

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ITERATIVE METHODS; MATHEMATICAL MODELS; PARAMETER ESTIMATION;

EID: 33745202405     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.01.001     Document Type: Article
Times cited : (16)

References (7)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19 6 (1974) 716-723
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0000541146 scopus 로고
    • Asymptotic analysis of penalized likelihood and related estimators
    • Dennis D.C., and Finbarr O.S. Asymptotic analysis of penalized likelihood and related estimators. Ann. Statist. 18 6 (1990) 1676-1695
    • (1990) Ann. Statist. , vol.18 , Issue.6 , pp. 1676-1695
    • Dennis, D.C.1    Finbarr, O.S.2
  • 3
    • 33847127458 scopus 로고    scopus 로고
    • Z. Lu, An iterative entropy regularized likelihood learning algorithm for cluster analysis with the number of clusters automatically detected, in: Proceedings of the ICNN&B'05, Beijing, China, 2005, pp. 650-655.
  • 4
    • 26444498478 scopus 로고    scopus 로고
    • A Dynamic merge-or-split learning algorithm on Gaussian mixture for automated model selection
    • Springer, Berlin
    • Ma J., and He Q.C. A Dynamic merge-or-split learning algorithm on Gaussian mixture for automated model selection. Proceedings of the IDEAL'05, Lecture Notes in Computer Science vol. 3578 (2005), Springer, Berlin 203-210
    • (2005) Proceedings of the IDEAL'05, Lecture Notes in Computer Science , vol.3578 , pp. 203-210
    • Ma, J.1    He, Q.C.2
  • 5
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma J., Wang T., and Xu L. A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 56 (2004) 481-487
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 6
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Render R.A., and Walker H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 2 (1984) 195-239
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Render, R.A.1    Walker, H.F.2
  • 7
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture modes
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on mixture modes. Neural Networks 15 8-9 (2002) 1231-1237
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1231-1237
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.