메뉴 건너뛰기




Volumn 28, Issue 4, 2006, Pages 392-406

Support vector regression for on-line health monitoring of large-scale structures

Author keywords

On line; Robust health monitoring; Sub structure; Support vector regression

Indexed keywords

ALGORITHMS; CONDITION MONITORING; REGRESSION ANALYSIS; SAFETY FACTOR; VECTORS;

EID: 33745199865     PISSN: 01674730     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.strusafe.2005.12.001     Document Type: Article
Times cited : (42)

References (20)
  • 1
    • 0031079922 scopus 로고    scopus 로고
    • Seismic monitoring of abridge: assessing dynamic characteristics from both weak and strong ground excitations
    • Loh C.H., and Lee Z.K. Seismic monitoring of abridge: assessing dynamic characteristics from both weak and strong ground excitations. Earthquake Engry Struct Dyn 26 (1997) 269-288
    • (1997) Earthquake Engry Struct Dyn , vol.26 , pp. 269-288
    • Loh, C.H.1    Lee, Z.K.2
  • 2
    • 0030649929 scopus 로고
    • Substructural identification for damage estimation of structures
    • Yun C.B., and Lee H.J. Substructural identification for damage estimation of structures. Struct Safety 19 (1977) 121-140
    • (1977) Struct Safety , vol.19 , pp. 121-140
    • Yun, C.B.1    Lee, H.J.2
  • 3
    • 0032207048 scopus 로고    scopus 로고
    • ∞ fitter: its application to structural identification
    • ∞ fitter: its application to structural identification. J Enrgy Mech 124 (1998) 1233-1240
    • (1998) J Enrgy Mech , vol.124 , pp. 1233-1240
    • Sato, T.1    Qi, K.2
  • 6
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Proc Lett 9 (1999) 293-300
    • (1999) Neural Proc Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 7
    • 84950968334 scopus 로고
    • Least median of squares regression
    • Rousseeuw P.J. Least median of squares regression. J Am Statist Assoc 79 (1984) 871-880
    • (1984) J Am Statist Assoc , vol.79 , pp. 871-880
    • Rousseeuw, P.J.1
  • 8
    • 33745213029 scopus 로고    scopus 로고
    • Rousseeuw PJ, Van DK. Computing LTS regression for large data sets. Technical Report, University of Antwerp; 1999.
  • 10
    • 33745214119 scopus 로고    scopus 로고
    • Gunn SR. Support vector machines for classification and regression. Technical Report, University of Southampton; 1998.
  • 11
    • 33745210897 scopus 로고    scopus 로고
    • Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, Germany; 1998.
  • 12
    • 0033737832 scopus 로고    scopus 로고
    • Substructural identification using neural networks
    • Yun C.B., and Bahng E.Y. Substructural identification using neural networks. Comp Struct 77 (2000) 41-52
    • (2000) Comp Struct , vol.77 , pp. 41-52
    • Yun, C.B.1    Bahng, E.Y.2
  • 13
    • 33745193830 scopus 로고    scopus 로고
    • Osuna EE, Freund R, Girosi F. Support vector machines: training and applications. Technical Report, Massachusetts institute of technology; 1997.
  • 14
    • 33745192944 scopus 로고    scopus 로고
    • Platt JC. Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research; 1998.
  • 15
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVR regression training with SMO
    • Flake G.W., and Lawrence S. Efficient SVR regression training with SMO. Mach Learning 46 (2002) 271-290
    • (2002) Mach Learning , vol.46 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 16
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Leen T.K., Dietterich T.G., and Tresp V. (Eds), MIT Press, Cambridge
    • Cauweriberghs G., and Poggio T. Incremental and decremental support vector machine learning. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advance in neural information processing systems (2001), MIT Press, Cambridge 409-442
    • (2001) Advance in neural information processing systems , pp. 409-442
    • Cauweriberghs, G.1    Poggio, T.2
  • 17
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Theiler J.M.J., and Perkins S. Accurate on-line support vector regression. Neural Comp 15 (2003) 2683-2703
    • (2003) Neural Comp , vol.15 , pp. 2683-2703
    • Theiler, J.M.J.1    Perkins, S.2
  • 18
    • 33745196811 scopus 로고    scopus 로고
    • Martin M. On-line support vector machines for function approximation. Technical Report LSI-02-11-R, University of Politecnica Catalunya, Spain; 2004.
  • 19
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Mach Learning 46 (2002) 131-159
    • (2002) Mach Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 20
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.