-
1
-
-
0031079922
-
Seismic monitoring of abridge: assessing dynamic characteristics from both weak and strong ground excitations
-
Loh C.H., and Lee Z.K. Seismic monitoring of abridge: assessing dynamic characteristics from both weak and strong ground excitations. Earthquake Engry Struct Dyn 26 (1997) 269-288
-
(1997)
Earthquake Engry Struct Dyn
, vol.26
, pp. 269-288
-
-
Loh, C.H.1
Lee, Z.K.2
-
2
-
-
0030649929
-
Substructural identification for damage estimation of structures
-
Yun C.B., and Lee H.J. Substructural identification for damage estimation of structures. Struct Safety 19 (1977) 121-140
-
(1977)
Struct Safety
, vol.19
, pp. 121-140
-
-
Yun, C.B.1
Lee, H.J.2
-
3
-
-
0032207048
-
∞ fitter: its application to structural identification
-
∞ fitter: its application to structural identification. J Enrgy Mech 124 (1998) 1233-1240
-
(1998)
J Enrgy Mech
, vol.124
, pp. 1233-1240
-
-
Sato, T.1
Qi, K.2
-
6
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Proc Lett 9 (1999) 293-300
-
(1999)
Neural Proc Lett
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
7
-
-
84950968334
-
Least median of squares regression
-
Rousseeuw P.J. Least median of squares regression. J Am Statist Assoc 79 (1984) 871-880
-
(1984)
J Am Statist Assoc
, vol.79
, pp. 871-880
-
-
Rousseeuw, P.J.1
-
8
-
-
33745213029
-
-
Rousseeuw PJ, Van DK. Computing LTS regression for large data sets. Technical Report, University of Antwerp; 1999.
-
-
-
-
10
-
-
33745214119
-
-
Gunn SR. Support vector machines for classification and regression. Technical Report, University of Southampton; 1998.
-
-
-
-
11
-
-
33745210897
-
-
Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, Germany; 1998.
-
-
-
-
12
-
-
0033737832
-
Substructural identification using neural networks
-
Yun C.B., and Bahng E.Y. Substructural identification using neural networks. Comp Struct 77 (2000) 41-52
-
(2000)
Comp Struct
, vol.77
, pp. 41-52
-
-
Yun, C.B.1
Bahng, E.Y.2
-
13
-
-
33745193830
-
-
Osuna EE, Freund R, Girosi F. Support vector machines: training and applications. Technical Report, Massachusetts institute of technology; 1997.
-
-
-
-
14
-
-
33745192944
-
-
Platt JC. Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research; 1998.
-
-
-
-
15
-
-
0036160859
-
Efficient SVR regression training with SMO
-
Flake G.W., and Lawrence S. Efficient SVR regression training with SMO. Mach Learning 46 (2002) 271-290
-
(2002)
Mach Learning
, vol.46
, pp. 271-290
-
-
Flake, G.W.1
Lawrence, S.2
-
16
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
Leen T.K., Dietterich T.G., and Tresp V. (Eds), MIT Press, Cambridge
-
Cauweriberghs G., and Poggio T. Incremental and decremental support vector machine learning. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advance in neural information processing systems (2001), MIT Press, Cambridge 409-442
-
(2001)
Advance in neural information processing systems
, pp. 409-442
-
-
Cauweriberghs, G.1
Poggio, T.2
-
17
-
-
0141765796
-
Accurate on-line support vector regression
-
Theiler J.M.J., and Perkins S. Accurate on-line support vector regression. Neural Comp 15 (2003) 2683-2703
-
(2003)
Neural Comp
, vol.15
, pp. 2683-2703
-
-
Theiler, J.M.J.1
Perkins, S.2
-
18
-
-
33745196811
-
-
Martin M. On-line support vector machines for function approximation. Technical Report LSI-02-11-R, University of Politecnica Catalunya, Spain; 2004.
-
-
-
-
20
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
|