-
1
-
-
0002874243
-
The structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations
-
J. Arms, J. E. Marsden, and V. Moncrief. The structure of the space of solutions of Einstein's equations II: Several Killing fields and the Einstein-Yang-Mills equations. Annals Phys., 144(1):81-106, 1982.
-
(1982)
Annals Phys.
, vol.144
, Issue.1
, pp. 81-106
-
-
Arms, J.1
Marsden, J.E.2
Moncrief, V.3
-
2
-
-
0000177308
-
Coordinate invariance and energy expressions in general relativity
-
R. Arnowitt, S. Deser, and C. Misner. Coordinate invariance and energy expressions in general relativity. Phys. Rev., 122:997-1006, 1961.
-
(1961)
Phys. Rev.
, vol.122
, pp. 997-1006
-
-
Arnowitt, R.1
Deser, S.2
Misner, C.3
-
3
-
-
0002773127
-
The dynamics of general relativity
-
L. Witten, editor. Wiley, N.Y.
-
R. Arnowitt, S. Deser, and C. Misner. The dynamics of general relativity. In L. Witten, editor, Gravitation, pages 227-265. Wiley, N.Y., 1962.
-
(1962)
Gravitation
, pp. 227-265
-
-
Arnowitt, R.1
Deser, S.2
Misner, C.3
-
4
-
-
0033474442
-
Équations d'ondes quasilinéaires et estimations de strichartz
-
H. Bahouri and J.-Y. Chemin, équations d'ondes quasilinéaires et estimations de Strichartz. Am. J. Math., 121:1337-1377, 1999.
-
(1999)
Am. J. Math.
, vol.121
, pp. 1337-1377
-
-
Bahouri, H.1
Chemin, J.-Y.2
-
5
-
-
84990556234
-
The mass of an asymptotically flat manifold
-
R. Bartnik. The mass of an asymptotically flat manifold. Comm. Pure Appl. Math., 39:661-693, 1986.
-
(1986)
Comm. Pure Appl. Math.
, vol.39
, pp. 661-693
-
-
Bartnik, R.1
-
6
-
-
0001310730
-
New definition of quasilocal mass
-
May
-
R. Bartnik. New definition of quasilocal mass. Phys. Rev. Lett., 62(20):2346-2348, May 1989.
-
(1989)
Phys. Rev. Lett.
, vol.62
, Issue.20
, pp. 2346-2348
-
-
Bartnik, R.1
-
7
-
-
21644469571
-
Boundary value problems for Dirac-type equations
-
R. Bartnik and P. Chruściel. Boundary value problems for Dirac-type equations. J. reine u. angewandte Math., 579:13-73, 2005.
-
(2005)
J. Reine U. Angewandte Math.
, vol.579
, pp. 13-73
-
-
Bartnik, R.1
Chruściel, P.2
-
8
-
-
33745216955
-
Mass and 3-metrics of non-negative scalar curvature
-
Li Tatsien, editor. HEP Beijing. math.DG/0304259
-
R. Bartnik. Mass and 3-metrics of non-negative scalar curvature. In Li Tatsien, editor, Proceedings, ICM 2002, volume II, pages 231-240. HEP Beijing, 2002. math.DG/0304259.
-
(2002)
Proceedings, ICM 2002
, vol.2
, pp. 231-240
-
-
Bartnik, R.1
-
9
-
-
0030542294
-
Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem
-
R. Beig and P. T. Chruściel. Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem. J. Math. Phys., 37:1939-1961, 1996.
-
(1996)
J. Math. Phys.
, vol.37
, pp. 1939-1961
-
-
Beig, R.1
Chruściel, P.T.2
-
10
-
-
2942689777
-
Sign of gravitational energy
-
D. Brill, S. Deser, and L. Fadeev. Sign of gravitational energy. Phys. Lett., 26A(11):538-539, 1968.
-
(1968)
Phys. Lett.
, vol.26 A
, Issue.11
, pp. 538-539
-
-
Brill, D.1
Deser, S.2
Fadeev, L.3
-
11
-
-
0002835512
-
The Cauchy problem
-
A. Held, editor, chapter. Plenum
-
Y. Choquet-Bruhat and J. W. York. The Cauchy problem. In A. Held, editor, General Relativity and Gravitation - the Einstein Centenary, chapter 4, pages 99-160. Plenum, 1979.
-
(1979)
General Relativity and Gravitation - The Einstein Centenary
, vol.4
, pp. 99-160
-
-
Choquet-Bruhat, Y.1
York, J.W.2
-
13
-
-
0002057789
-
Boundary conditions at spatial infinity from a Hamiltonian point of view
-
P. G. Bergmann and V. de Sabbata, editors. Plenum, New York
-
P. T. Chruściel. Boundary conditions at spatial infinity from a Hamiltonian point of view. In P. G. Bergmann and V. de Sabbata, editors, Topological properties and global structure of space-time. Plenum, New York, 1986.
-
(1986)
Topological Properties and Global Structure of Space-time
-
-
Chruściel, P.T.1
-
14
-
-
2942685523
-
Manifold structures for sets of solutions of the general relativistic constraint equations
-
P. T. Chrusciel and E. Delay. Manifold structures for sets of solutions of the general relativistic constraint equations. Jour. Geom. Phys. 51:442-472, 2004.
-
(2004)
Jour. Geom. Phys.
, vol.51
, pp. 442-472
-
-
Chrusciel, P.T.1
Delay, E.2
-
15
-
-
0034288767
-
Scalar curvature deformation and a gluing construction for the Einstein constraint equations
-
J. Corvino. Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys., 214:137-189, 2000.
-
(2000)
Commun. Math. Phys.
, vol.214
, pp. 137-189
-
-
Corvino, J.1
-
17
-
-
84979700713
-
Die grundlage der allgemeinen relativitätstheorie
-
A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Annalen d. Phys., 49:769, 1916.
-
(1916)
Annalen D. Phys.
, vol.49
, pp. 769
-
-
Einstein, A.1
-
21
-
-
33745202643
-
-
Functional analysis and semi-groups. Am. Math. Soc., 2 edition
-
E. Hille and R. Phillips. Functional analysis and semi-groups, volume 31 of Colloquium Series. Am. Math. Soc., 2 edition, 1957.
-
(1957)
Colloquium Series
, vol.31
-
-
Hille, E.1
Phillips, R.2
-
24
-
-
36749105316
-
Spacetime symmetries and linearization stability of the Einstein equations I
-
V. Moncrief. Spacetime symmetries and linearization stability of the Einstein equations I. J. Math. Phys., 16(3):493-498, 1975.
-
(1975)
J. Math. Phys.
, vol.16
, Issue.3
, pp. 493-498
-
-
Moncrief, V.1
-
25
-
-
36749120821
-
Spacetime symmetries and linearization stability of the Einstein equations II
-
V. Moncrief. Spacetime symmetries and linearization stability of the Einstein equations II. J. Math. Phys., 17(10):1893-1902, 1976.
-
(1976)
J. Math. Phys.
, vol.17
, Issue.10
, pp. 1893-1902
-
-
Moncrief, V.1
-
26
-
-
0007021922
-
Total energy momentum in general relativity
-
N. ÓMurchadha. Total energy momentum in general relativity. J. Math. Phys., 27:2111-2128, 1986.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2111-2128
-
-
Ómurchadha, N.1
-
27
-
-
0041169420
-
The gravitational Hamiltonian
-
F. J. Flaherty, editor, Lecture Notes in Physics. Springer Verlag
-
J. M. Nester. The gravitational Hamiltonian. In F. J. Flaherty, editor, Asymptotic behaviour of mass and space-time geometry (Oregon 1983), Lecture Notes in Physics 212, pages 155-163. Springer Verlag, 1984.
-
(1984)
Asymptotic Behaviour of Mass and Space-time Geometry (Oregon 1983)
, vol.212
, pp. 155-163
-
-
Nester, J.M.1
-
28
-
-
0000973997
-
Role of surface integrals in the Hamiltonian formulation of general relativity
-
T. Regge and C. Teitelboim. Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys., 88:286-318, 1974.
-
(1974)
Ann. Phys.
, vol.88
, pp. 286-318
-
-
Regge, T.1
Teitelboim, C.2
-
29
-
-
34250263023
-
Proof of the positive mass theorem
-
R. Schoen and S.-T. Yau. Proof of the positive mass theorem. Comm. Math. Phys., 65:45-76, 1979.
-
(1979)
Comm. Math. Phys.
, vol.65
, pp. 45-76
-
-
Schoen, R.1
Yau, S.-T.2
-
30
-
-
29244463784
-
Proof of the positive mass theorem II
-
R. Schoen and S.-T. Yau. Proof of the positive mass theorem II. Comm. Math. Phys., 79:231-260, 1981.
-
(1981)
Comm. Math. Phys.
, vol.79
, pp. 231-260
-
-
Schoen, R.1
Yau, S.-T.2
-
32
-
-
31144439302
-
Nonlinear wave equations
-
Li Tatsien, editor. HEP Beijing. arXiv/math.AP/0304397
-
Daniel Tataxu. Nonlinear wave equations. In Li Tatsien, editor, Proceedings, ICM 2002, volume III, pages 209-220. HEP Beijing, 2002. arXiv/math.AP/0304397.
-
(2002)
Proceedings, ICM 2002
, vol.3
, pp. 209-220
-
-
Tataxu, D.1
-
34
-
-
33744727108
-
A simple proof of the positive energy theorem
-
E. Witten. A simple proof of the positive energy theorem. Comm. Math. Phys., 80:381-402, 1981.
-
(1981)
Comm. Math. Phys.
, vol.80
, pp. 381-402
-
-
Witten, E.1
-
35
-
-
0842294295
-
Energy and momentum of the gravitational field
-
F. Tipler, editor. Academic Press
-
J. York. Energy and momentum of the gravitational field. In F. Tipler, editor, Essays in general relativity in honour of A. Taub, pages 39-58. Academic Press, 1980.
-
(1980)
Essays in General Relativity in Honour of A. Taub
, pp. 39-58
-
-
York, J.1
|