메뉴 건너뛰기




Volumn 7, Issue 5, 2006, Pages 937-942

Studying the performance of artificial neural networks on problems related to cryptography

Author keywords

Approximation; Artificial neural networks; Diffie Hellman problem; Discrete logarithm; Factorization

Indexed keywords

NEURAL NETWORKS; PERFORMANCE; POLYNOMIAL APPROXIMATION; PROBLEM SOLVING;

EID: 33745166264     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2005.12.002     Document Type: Article
Times cited : (29)

References (35)
  • 1
    • 85040155621 scopus 로고    scopus 로고
    • L. Adleman, A subexponential algorithm for discrete logarithm problem with applications to cryptography, 20th FOCS, 1979, pp. 55-60.
  • 2
    • 0035479038 scopus 로고    scopus 로고
    • Artificial nonmonotonic neural networks
    • Boutsinas B., and Vrahatis M.N. Artificial nonmonotonic neural networks. Artif. Intell. 132 (2001) 1-38
    • (2001) Artif. Intell. , vol.132 , pp. 1-38
    • Boutsinas, B.1    Vrahatis, M.N.2
  • 3
    • 0000924324 scopus 로고    scopus 로고
    • On certain exponential sums and the distribution of Diffie-Hellman triples
    • Canetti R., Friedlander J., and Shparlinski I. On certain exponential sums and the distribution of Diffie-Hellman triples. J. London Math. Soc. (2) 59 3 (1999) 799-812
    • (1999) J. London Math. Soc. (2) , vol.59 , Issue.3 , pp. 799-812
    • Canetti, R.1    Friedlander, J.2    Shparlinski, I.3
  • 4
    • 0001638393 scopus 로고    scopus 로고
    • On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping
    • Coppersmith D., and Shparlinski I. On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J. Cryptology 13 (2000) 339-360
    • (2000) J. Cryptology , vol.13 , pp. 339-360
    • Coppersmith, D.1    Shparlinski, I.2
  • 6
    • 84874800178 scopus 로고
    • A public key cryptosystem and a signature scheme based on discrete logarithms
    • El Gamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31 (1985) 469-472
    • (1985) IEEE Trans. Inf. Theory , vol.31 , pp. 469-472
    • El Gamal, T.1
  • 7
    • 0012482609 scopus 로고    scopus 로고
    • Polynomial representations of the Diffie-Hellman mapping
    • El Mahassni E., and Shparlinski I. Polynomial representations of the Diffie-Hellman mapping. Bull. Aust. Math. Soc. 63 3 (2001) 467-473
    • (2001) Bull. Aust. Math. Soc. , vol.63 , Issue.3 , pp. 467-473
    • El Mahassni, E.1    Shparlinski, I.2
  • 8
    • 0004063090 scopus 로고    scopus 로고
    • Macmillan College Publishing Company
    • Haykin S. Neural Networks (1999), Macmillan College Publishing Company
    • (1999) Neural Networks
    • Haykin, S.1
  • 9
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 11
    • 0035419653 scopus 로고    scopus 로고
    • Adaptive stepsize algorithms for on-line training of neural networks
    • Magoulas G.D., Plagianakos V.P., and Vrahatis M.N. Adaptive stepsize algorithms for on-line training of neural networks. Nonlinear Anal. 47 5 (2001) 3425-3430
    • (2001) Nonlinear Anal. , vol.47 , Issue.5 , pp. 3425-3430
    • Magoulas, G.D.1    Plagianakos, V.P.2    Vrahatis, M.N.3
  • 12
    • 0031028741 scopus 로고    scopus 로고
    • Effective backpropagation training with variable stepsize
    • Magoulas G.D., Vrahatis M.N., and Androulakis G.S. Effective backpropagation training with variable stepsize. Neural Networks 10 1 (1997) 69-82
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 69-82
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 13
    • 0033209687 scopus 로고    scopus 로고
    • Increasing the convergence rate of the error backpropagation algorithm by learning rate adaptation methods
    • Magoulas G.D., Vrahatis M.N., and Androulakis G.S. Increasing the convergence rate of the error backpropagation algorithm by learning rate adaptation methods. Neural Comput. 11 7 (1999) 1769-1796
    • (1999) Neural Comput. , vol.11 , Issue.7 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 14
    • 0032621240 scopus 로고    scopus 로고
    • The relationship between breaking the Diffie-Hellman protocol and computing discrete logarithms
    • Maurer U., and Wolf S. The relationship between breaking the Diffie-Hellman protocol and computing discrete logarithms. SIAM J. Comput. 28 (1999) 1689-1721
    • (1999) SIAM J. Comput. , vol.28 , pp. 1689-1721
    • Maurer, U.1    Wolf, S.2
  • 15
    • 29244471186 scopus 로고
    • Explicit form for the discrete logarithm over the field GF (p, k)
    • Meletiou G. Explicit form for the discrete logarithm over the field GF (p, k). Arch. Math. Brno 29 1-2 (1993) 25-28
    • (1993) Arch. Math. Brno , vol.29 , Issue.1-2 , pp. 25-28
    • Meletiou, G.1
  • 17
    • 33745135000 scopus 로고    scopus 로고
    • G. Meletiou, D.K. Tasoulis, M.N. Vrahatis, A first study of the neural network approach to the RSA cryptosystem, IASTED 2002 Conference on Artificial Intelligence, 2002, pp. 483-488.
  • 18
    • 33745145413 scopus 로고    scopus 로고
    • G.C. Meletiou, D.K. Tasoulis, M.N. Vrahatis, Cryptography through interpolation approximation and computational intelligence methods, Bull. Greek Math. Soc. 48 (2003) 61-75.
  • 20
    • 0018019325 scopus 로고
    • Hiding information and signatures in trapdoor knapsacks
    • Merkle R.C., and Hellman M.E. Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inf. Theory 24 (1978) 525-530
    • (1978) IEEE Trans. Inf. Theory , vol.24 , pp. 525-530
    • Merkle, R.C.1    Hellman, M.E.2
  • 21
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1993) 525-533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møller, M.F.1
  • 22
    • 0000504878 scopus 로고
    • A polynomial representation for logarithms in GF (q)
    • Mullen G.L., and White D. A polynomial representation for logarithms in GF (q). Acta Arithmetica 47 (1986) 255-261
    • (1986) Acta Arithmetica , vol.47 , pp. 255-261
    • Mullen, G.L.1    White, D.2
  • 23
    • 0002777542 scopus 로고
    • A short proof for explicit formulas for discrete logarithms in finite fields
    • Niederreiter H. A short proof for explicit formulas for discrete logarithms in finite fields. Appl. Algebra Eng. Commun. Comput. 1 (1990) 55-57
    • (1990) Appl. Algebra Eng. Commun. Comput. , vol.1 , pp. 55-57
    • Niederreiter, H.1
  • 24
    • 0000746996 scopus 로고
    • Discrete logarithms in finite fields and their cryptographic significance
    • Odlyzko A.M. Discrete logarithms in finite fields and their cryptographic significance. EUROCRYPT 84 (1984)
    • (1984) EUROCRYPT , vol.84
    • Odlyzko, A.M.1
  • 25
    • 0001534053 scopus 로고    scopus 로고
    • Discrete logarithms: the past and the future
    • Odlyzko A.M. Discrete logarithms: the past and the future. Des. Codes Cryptogr. 19 (2000) 129-145
    • (2000) Des. Codes Cryptogr. , vol.19 , pp. 129-145
    • Odlyzko, A.M.1
  • 26
    • 85011438572 scopus 로고    scopus 로고
    • A. Pincus, Approximation theory of the MLP model in neural networks, Acta Numerica (1999) 143-195.
  • 27
    • 84919085619 scopus 로고
    • An improved algorithm for computing logarithms over GF (p) and its cryptographic significance
    • Pohlig S.C., and Hellman M. An improved algorithm for computing logarithms over GF (p) and its cryptographic significance. IEEE Trans. Inf. Theory 24 (1978) 106-110
    • (1978) IEEE Trans. Inf. Theory , vol.24 , pp. 106-110
    • Pohlig, S.C.1    Hellman, M.2
  • 28
    • 84943274699 scopus 로고    scopus 로고
    • M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, 1993, pp. 586-591.
  • 29
    • 0017930809 scopus 로고
    • A method for obtaining digital signatures and public-key cryptosystems
    • Rivest R., Shamir A., and Adlemann L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21 (1978) 120-126
    • (1978) Commun. ACM , vol.21 , pp. 120-126
    • Rivest, R.1    Shamir, A.2    Adlemann, L.3
  • 30
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel Distributed Processing vol. 1 (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 3 1 (1990) 109-118
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 32
  • 33
    • 0012483661 scopus 로고    scopus 로고
    • A note on the interpolation of the Diffie-Hellman mapping
    • Winterhof A. A note on the interpolation of the Diffie-Hellman mapping. Bull. Aust. Math. Soc. 64 3 (2001) 475-477
    • (2001) Bull. Aust. Math. Soc. , vol.64 , Issue.3 , pp. 475-477
    • Winterhof, A.1
  • 34
    • 31244436061 scopus 로고    scopus 로고
    • Polynomial interpolation of the discrete logarithm
    • Winterhof A. Polynomial interpolation of the discrete logarithm. Des. Codes Cryptogr. 25 1 (2002) 63-72
    • (2002) Des. Codes Cryptogr. , vol.25 , Issue.1 , pp. 63-72
    • Winterhof, A.1
  • 35
    • 0024880831 scopus 로고
    • Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings
    • White H. Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.