-
1
-
-
4243684526
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.2245
-
W. K. Wootters, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80. 2245 80, 2245 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 2245
-
-
Wootters, W.K.1
-
3
-
-
0042410587
-
-
NATUAS 0028-0836 10.1038/nature01888
-
S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith, Nature (London) NATUAS 0028-0836 10.1038/nature01888 425, 48 (2003).
-
(2003)
Nature (London)
, vol.425
, pp. 48
-
-
Ghosh, S.1
Rosenbaum, T.F.2
Aeppli, G.3
Coppersmith, S.N.4
-
4
-
-
84924581223
-
-
Cambridge University Press, Cambridge, UK
-
S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 2000).
-
(2000)
Quantum Phase Transitions
-
-
Sachdev, S.1
-
5
-
-
0037061511
-
-
NATUAS 0028-0836 10.1038/416608a
-
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London) NATUAS 0028-0836 10.1038/416608a 416, 608 (2002).
-
(2002)
Nature (London)
, vol.416
, pp. 608
-
-
Osterloh, A.1
Amico, L.2
Falci, G.3
Fazio, R.4
-
6
-
-
39249083652
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.87.017901
-
M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.87.017901 87, 017901 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 017901
-
-
Arnesen, M.C.1
Bose, S.2
Vedral, V.3
-
7
-
-
0035331785
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.63.052302
-
K. M. O'Connor and W. K. Wootters, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.052302 63, 052302 (2001).
-
(2001)
Phys. Rev. a
, vol.63
, pp. 052302
-
-
O'Connor, K.M.1
Wootters, W.K.2
-
8
-
-
0037136252
-
-
PYLAAG 0375-9601 10.1016/S0375-9601(02)00885-X
-
X. Wang and P. Zanardi, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(02)00885-X 301, 1 (2002).
-
(2002)
Phys. Lett. a
, vol.301
, pp. 1
-
-
Wang, X.1
Zanardi, P.2
-
9
-
-
0038115189
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.227902
-
G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.227902 90, 227902 (2003);
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 227902
-
-
Vidal, G.1
Latorre, J.I.2
Rico, E.3
Kitaev, A.4
-
10
-
-
2442560099
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.096402
-
V. E. Korepin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92. 096402 92, 096402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 096402
-
-
Korepin, V.E.1
-
12
-
-
33745059857
-
-
quant-ph/0407228, NJOPFM 1367-2630 (to be published).
-
Y. Chen, P. Zanardi, Z. D. Wang, and F. C. Zhang, quant-ph/0407228, New J. Phys. NJOPFM 1367-2630 (to be published).
-
New J. Phys.
-
-
Chen, Y.1
Zanardi, P.2
Wang, Z.D.3
Zhang, F.C.4
-
13
-
-
33745057706
-
-
Let us consider the three-dimensional Anderson localization model, with H=- ijσ c iσ † cjσ + iσ i c iσ † ciσ. The disorder is incorporated into the diagonal parameter i, which changes randomly with a uniform distribution [-W2,W2] where W characterizes the strength of the disorder. We here examine the reduced entanglement and found clearly its monotonic decrease with respect to W, while its first derivative has a local minimum at Wc ∼16 (Wc is the critical disorder strength) which corresponds to a second-order metal-insulator transition, in excellent agreement the well-known result.
-
Let us consider the three-dimensional Anderson localization model, with H=- ijσ c iσ † cjσ + iσ i c iσ † ciσ. The disorder is incorporated into the diagonal parameter i, which changes randomly with a uniform distribution [-W2,W2] where W characterizes the strength of the disorder. We here examine the reduced entanglement and found clearly its monotonic decrease with respect to W, while its first derivative has a local minimum at Wc ∼16 (Wc is the critical disorder strength) which corresponds to a second-order metal-insulator transition, in excellent agreement the well-known result.
-
-
-
-
14
-
-
33745100166
-
-
This feature implies that the reduced entropy of sublattice introduced by us is an extensive quantity just like the thermal entropy, which is distinctly from other entanglement measures proposed before and is a reason why it can play a similar role in QPTs as that played by the thermal entropy in thermodynamic phase transitions.
-
This feature implies that the reduced entropy of sublattice introduced by us is an extensive quantity just like the thermal entropy, which is distinctly from other entanglement measures proposed before and is a reason why it can play a similar role in QPTs as that played by the thermal entropy in thermodynamic phase transitions.
-
-
-
-
15
-
-
1542317587
-
-
SCIEAS 0036-8075 10.1126/science.1091806
-
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Science SCIEAS 0036-8075 10.1126/science.1091806 303, 1490 (2004).
-
(2004)
Science
, vol.303
, pp. 1490
-
-
Senthil, T.1
Vishwanath, A.2
Balents, L.3
Sachdev, S.4
Fisher, M.P.A.5
-
16
-
-
0036147251
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.65.014407
-
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.65.014407 65, 014407 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 014407
-
-
Matsumoto, M.1
Yasuda, C.2
Todo, S.3
Takayama, H.4
-
17
-
-
0001326970
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.60.14613
-
V. N. Kotov, J. Oitmaa, O. P. Sushkov, and Z. Weihong, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.14613 60, 14613 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 14613
-
-
Kotov, V.N.1
Oitmaa, J.2
Sushkov, O.P.3
Weihong, Z.4
-
18
-
-
0034903327
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.63.104420
-
O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.63.104420 63, 104420 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 104420
-
-
Sushkov, O.P.1
Oitmaa, J.2
Weihong, Z.3
-
19
-
-
42749106653
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.217202
-
C. D. Batista and S. A. Trugman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.217202 93, 217202 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 217202
-
-
Batista, C.D.1
Trugman, S.A.2
-
20
-
-
19644390614
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.127202
-
O. A. Starykh and L. Balents, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.127202 93, 127202 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 127202
-
-
Starykh, O.A.1
Balents, L.2
-
23
-
-
29644438917
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.094416
-
O. A. Starykh, A. Furusaki, and L. Balents, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.094416 72, 094416 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 094416
-
-
Starykh, O.A.1
Furusaki, A.2
Balents, L.3
-
24
-
-
33745069273
-
-
Our hard-core bosons Hamiltonian reads H=-t ij (bi† bj + bj† bi) + ij V (ni - 1 2) (nj - 1 2) with the hopping integral t, nearest-neighboring repulsion V and the boson creation operator bi†. This model is equivalent to a spin-1/2 XXZ model, H= ij [- J0 (Six Sjx + Siy Sjy) + Jz Siz Sjz] with J0 =2t and Jz =V. We use the same technique to analyze the reduced entropy and found a local maxima at Jz J0 ∼10 which may correspond to a possible first-order superfluid to supersolid transition. It is clear that in the large Jz (V) limit, a novel supersolid phase may show up due to the remarkable geometrical frustration.
-
Our hard-core bosons Hamiltonian reads H=-t ij (bi† bj + bj† bi) + ij V (ni - 1 2) (nj - 1 2) with the hopping integral t, nearest-neighboring repulsion V and the boson creation operator bi†. This model is equivalent to a spin-1/2 XXZ model, H= ij [- J0 (Six Sjx + Siy Sjy) + Jz Siz Sjz] with J0 =2t and Jz =V. We use the same technique to analyze the reduced entropy and found a local maxima at Jz J0 ∼10 which may correspond to a possible first-order superfluid to supersolid transition. It is clear that in the large Jz (V) limit, a novel supersolid phase may show up due to the remarkable geometrical frustration.
-
-
-
-
25
-
-
19544364474
-
-
The local entanglement of a single site was analyzed for the same model in a piece of earlier work [PRLTAO 0031-9007 10.1103/PhysRevLett.93.086402
-
The local entanglement of a single site was analyzed for the same model in a piece of earlier work [S. J. Gu, S. S. Deng, Y. Q. Li, and H. Q. Lin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.086402 93, 086402 (2004)], where only the classical phase boundary can be identified.
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 086402
-
-
Gu, S.J.1
Deng, S.S.2
Li, Y.Q.3
Lin, H.Q.4
-
26
-
-
3242655716
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.236401
-
A. W. Sandvik, L. Balents, and D. K. Campbell, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.236401 92, 236401 (2004). We note that this study considered only one BOW-order parameter around the classical phase boundary, and thus may have eliminated the possibility to have two different BOW-type phases.
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 236401
-
-
Sandvik, A.W.1
Balents, L.2
Campbell, D.K.3
-
27
-
-
33745101656
-
-
The tendency has been observed clearly in all 1D models studied by us with the available computational resources.
-
The tendency has been observed clearly in all 1D models studied by us with the available computational resources.
-
-
-
|