메뉴 건너뛰기




Volumn 13, Issue 1, 2006, Pages 89-117

On the use of human-computer interaction for projected nearest neighbor search

Author keywords

High dimensions; Nearest neighbor search; Projected clustering

Indexed keywords

DATA ACQUISITION; MAN MACHINE SYSTEMS; PATTERN RECOGNITION; PROBLEM SOLVING; VISUAL COMMUNICATION;

EID: 33745059959     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-005-0030-6     Document Type: Article
Times cited : (4)

References (40)
  • 1
    • 0036206031 scopus 로고    scopus 로고
    • Towards meaningful high dimensional nearest neighbor search by human-computer interaction
    • Aggarwal, C.C. 2002. Towards meaningful high dimensional nearest neighbor search by human-computer interaction. In Proceedings of the International Conference on Data Engineering, pp. 593-604.
    • (2002) Proceedings of the International Conference on Data Engineering , pp. 593-604
    • Aggarwal, C.C.1
  • 2
    • 0040154165 scopus 로고    scopus 로고
    • Re-designing distance functions and distance based applications for high dimensional data
    • Aggarwal, C.C. 2001. Re-designing distance functions and distance based applications for high dimensional data. ACM SIGMOD Record, 30(1):13-18.
    • (2001) ACM SIGMOD Record , vol.30 , Issue.1 , pp. 13-18
    • Aggarwal, C.C.1
  • 4
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • Aggarwal, C.C. and Yu, P.S. 2000. Finding generalized projected clusters in high dimensional spaces. ACM SIGMOD Conference Proceedings, pp. 70-81.
    • (2000) ACM SIGMOD Conference Proceedings , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 5
    • 0035789614 scopus 로고    scopus 로고
    • A human-computer cooperative system for effective high dimensional clustering
    • Aggarwal, C.C. 2001. A human-computer cooperative system for effective high dimensional clustering. ACM KDD Conference Proceedings, pp. 221-226.
    • (2001) ACM KDD Conference Proceedings , pp. 221-226
    • Aggarwal, C.C.1
  • 6
    • 0034592763 scopus 로고    scopus 로고
    • The IGrid Index: Reversing the dimensionality Curse for similarity indexing in high dimensional space
    • Aggarwal, C.C. and Yu, P.S. 2000. The IGrid Index: Reversing the dimensionality Curse for similarity indexing in high dimensional space. ACM KDD Conference Proceedings, pp. 119-129.
    • (2000) ACM KDD Conference Proceedings , pp. 119-129
    • Aggarwal, C.C.1    Yu, P.S.2
  • 8
    • 0034592922 scopus 로고    scopus 로고
    • Towards an effective cooperation of the user and the computer for classification
    • Ankerst, M., Ester, M., and Kriegel, H.-P. 2000. Towards an effective cooperation of the user and the computer for classification. ACM KDD Conference Proceedings, pp. 179-188.
    • (2000) ACM KDD Conference Proceedings , pp. 179-188
    • Ankerst, M.1    Ester, M.2    Kriegel, H.-P.3
  • 9
    • 33745075636 scopus 로고    scopus 로고
    • Applied Visions Inc. URL: http://www.avi.com
  • 10
    • 0000608834 scopus 로고    scopus 로고
    • Density-based indexing for approximate nearest neighbor queries
    • Bennett, K.P., Fayyad, U., and Geiger, D. 1999. Density-based indexing for approximate nearest neighbor queries. ACM KDD Conference Proceedings, pp. 233-243.
    • (1999) ACM KDD Conference Proceedings , pp. 233-243
    • Bennett, K.P.1    Fayyad, U.2    Geiger, D.3
  • 13
    • 0003841484 scopus 로고    scopus 로고
    • Dynamic projections in high-dimensional visualization: Theory and Computational Methods
    • AT&T Labs, Florham Park, NJ
    • Buja, A., Cook, D., Asimov, D., and Hurley, C. 1997. Dynamic projections in high-dimensional visualization: Theory and Computational Methods, Technical Report, AT&T Labs, Florham Park, NJ.
    • (1997) Technical Report
    • Buja, A.1    Cook, D.2    Asimov, D.3    Hurley, C.4
  • 14
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional spaces
    • Chakrabarti, K. and Mehrotra, S. 2000. Local dimensionality reduction: A new approach to indexing high dimensional spaces. Very Large Database Conference Proceedings, pp. 89-100.
    • (2000) Very Large Database Conference Proceedings , pp. 89-100
    • Chakrabarti, K.1    Mehrotra, S.2
  • 15
    • 85172422910 scopus 로고    scopus 로고
    • Density-connected sets and their application for trend detection in spatial databases
    • Ester, M., Kriegel, H.-P, Sander, J., Wimmer, M., and Xu, X. 1997. Density-connected sets and their application for trend detection in spatial databases. ACM KDD Conference Proceedings, pp. 10-15.
    • (1997) ACM KDD Conference Proceedings , pp. 10-15
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 18
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman, J.H. and Tukey, J.W. 1974. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions of Conputers, C23:881-890.
    • (1974) IEEE Transactions of Conputers , vol.C23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 20
    • 0032650246 scopus 로고    scopus 로고
    • Constraint based multidimensional data mining
    • Han, J., Lakshmanan, L., and Ng, R. 1999. Constraint based multidimensional data mining. IEEE Computer, 32(8):46-50.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 46-50
    • Han, J.1    Lakshmanan, L.2    Ng, R.3
  • 23
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber, P.J. 1985. Projection pursuit. The Annals of Statistics, 13(2):435-475.
    • (1985) The Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 25
    • 0031162081 scopus 로고    scopus 로고
    • The SR-Tree: An index structure for high dimensional nearest neighbor queries
    • Katayama, N. and Satoh , S. 1997. The SR-Tree: An index structure for high dimensional nearest neighbor queries. ACM SIGMOD Conference, pp. 369-380.
    • (1997) ACM SIGMOD Conference , pp. 369-380
    • Katayama, N.1    Satoh, S.2
  • 26
    • 0035020719 scopus 로고    scopus 로고
    • Distinctiveness sensitive nearest neighbor sarch for efficient similarity retrieval of multimedia information
    • Katayama, N. and Satoh, S. 2001. Distinctiveness sensitive nearest neighbor sarch for efficient similarity retrieval of multimedia information. Proceedings of the ICDE Conference, pp. 493-502.
    • (2001) Proceedings of the ICDE Conference , pp. 493-502
    • Katayama, N.1    Satoh, S.2
  • 28
    • 0028203165 scopus 로고
    • Supporting data mining of large databases by visual feedback queries
    • Keim, D.A., Kriegel, H.-P., and Seidl, T. 1994. Supporting data mining of large databases by visual feedback queries. ICDE Conference, pp. 302-313.
    • (1994) ICDE Conference , pp. 302-313
    • Keim, D.A.1    Kriegel, H.-P.2    Seidl, T.3
  • 29
    • 0002975747 scopus 로고
    • Towards a practical method which help uncover the structure of a set of observations by finding the line transformation which optimizes a new index of condensation
    • R.C. Milton and J.A. Neider (Eds), Academic Press, New York
    • Kruskal, J.B. 1969. Towards a practical method which help uncover the structure of a set of observations by finding the line transformation which optimizes a new index of condensation. In R.C. Milton and J.A. Neider (Eds), Statistical Computation, Academic Press, New York, pp. 427-440.
    • (1969) Statistical Computation , pp. 427-440
    • Kruskal, J.B.1
  • 30
    • 34249762939 scopus 로고
    • The TV-tree: An index structure for high dimensional data
    • Lin, K.-I., Jagadish, H.V., and Faloutsos, C. 1992. The TV-tree: An index structure for high dimensional data. VLDB Journal, 3(4):517-542.
    • (1992) VLDB Journal , vol.3 , Issue.4 , pp. 517-542
    • Lin, K.-I.1    Jagadish, H.V.2    Faloutsos, C.3
  • 33
    • 34250647666 scopus 로고    scopus 로고
    • User-adaptive Exploration of Multidimensional Data
    • Sarawagi, S. 2000. User-adaptive Exploration of Multidimensional Data. VLDB Conference Proceedings, pp. 307-316.
    • (2000) VLDB Conference Proceedings , pp. 307-316
    • Sarawagi, S.1
  • 34
    • 84993661650 scopus 로고    scopus 로고
    • Efficient user-adaptable similarity search in large multimedia databases
    • Seidl, T. and Kriegel, H.-P. 1997. Efficient User-Adaptable Similarity Search in Large Multimedia Databases. Very Large Database Conference Proceedings, pp. 506-515.
    • (1997) Very Large Database Conference Proceedings , pp. 506-515
    • Seidl, T.1    Kriegel, H.-P.2
  • 38
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • Weber, R., Schek, H.-J., and Blott, S. 1998. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. Very Large Database Conference Proceedings, pp. 194-205.
    • (1998) Very Large Database Conference Proceedings , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 40
    • 0034593062 scopus 로고    scopus 로고
    • Interactive exploration of very large relational datasets through 3D dynamic projections
    • Yang, L. 2000. Interactive exploration of very large relational datasets through 3D dynamic projections. ACM KDD Conference Proceedings, pp. 236-243.
    • (2000) ACM KDD Conference Proceedings , pp. 236-243
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.