-
1
-
-
0001318567
-
Shuffling cards and stopping times
-
Aldous, D. J. and Diaconis, P. (1986) Shuffling cards and stopping times. Amer. Math. Monthly 93 333-348.
-
(1986)
Amer. Math. Monthly
, vol.93
, pp. 333-348
-
-
Aldous, D.J.1
Diaconis, P.2
-
3
-
-
0037933346
-
On the mixing time of simple random walk on the super critical percolation cluster
-
Benjamini, I. and Mossel, E. (2003) On the mixing time of simple random walk on the super critical percolation cluster. Probab. Theory Rel. Fields 125 408-420.
-
(2003)
Probab. Theory Rel. Fields
, vol.125
, pp. 408-420
-
-
Benjamini, I.1
Mossel, E.2
-
4
-
-
0030487036
-
Logarithmic Sobolev inequalities for finite Markov chains
-
Diaconis, P. and Saloff-Coste, L. (1996) Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695-750.
-
(1996)
Ann. Appl. Probab.
, vol.6
, pp. 695-750
-
-
Diaconis, P.1
Saloff-Coste, L.2
-
5
-
-
0003672936
-
Computing the volume of convex bodies: A case where randomness provably helps
-
(B. Bollobás, ed.), AMS
-
Dyer, M. and Frieze, A. (1992) Computing the volume of convex bodies: A case where randomness provably helps. In Probabilistic Combinatorics and its Applications (B. Bollobás, ed.), AMS, pp. 123-169.
-
(1992)
Probabilistic Combinatorics and Its Applications
, pp. 123-169
-
-
Dyer, M.1
Frieze, A.2
-
7
-
-
0033449220
-
Log-Sobolev inequalities and sampling from log-concave distributions
-
Frieze, A. and Kannan, R. (1999) Log-Sobolev inequalities and sampling from log-concave distributions. Ann. Appl. Probab. 9 14-26.
-
(1999)
Ann. Appl. Probab.
, vol.9
, pp. 14-26
-
-
Frieze, A.1
Kannan, R.2
-
8
-
-
84898957407
-
Conductance and the rapid mixing property for Markov chains: The approximation of the permanent resolved
-
Jerrum, M. and Sinclair, A. (1988) Conductance and the rapid mixing property for Markov chains: The approximation of the permanent resolved. In Proc. 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 235-243.
-
(1988)
Proc. 20th Annual ACM Symposium on Theory of Computing (STOC)
, pp. 235-243
-
-
Jerrum, M.1
Sinclair, A.2
-
10
-
-
26844513389
-
Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains
-
Jerrum, M., Son, J., Tetali, P. and Vigoda, E. (2004) Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains. Ann. Appl. Probab. 14 1741-1765.
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 1741-1765
-
-
Jerrum, M.1
Son, J.2
Tetali, P.3
Vigoda, E.4
-
11
-
-
51249166102
-
Isoperimetric problems for convex bodies and a localization lemma
-
Kannan, R., Lovász, L. and Simonovits, M. (1995) Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 541-559.
-
(1995)
Discrete Comput. Geom.
, vol.13
, pp. 541-559
-
-
Kannan, R.1
Lovász, L.2
Simonovits, M.3
-
13
-
-
0000458262
-
Concentration of measure and logarithmic Sobolev inequalities
-
Séminaire de Probabilités XXXIII, Springer, Berlin
-
Ledoux, M. (1999) Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités XXXIII, Vol. 1709 of Lecture Notes in Mathematics, Springer, Berlin, pp. 120-216.
-
(1999)
Lecture Notes in Mathematics
, vol.1709
, pp. 120-216
-
-
Ledoux, M.1
-
15
-
-
84990634606
-
Random walks in a convex body and an improved volume algorithm
-
Lovász, L. and Simonovits, M. (1993) Random walks in a convex body and an improved volume algorithm. Random Struct. Alg. 4 359-412.
-
(1993)
Random Struct. Alg.
, vol.4
, pp. 359-412
-
-
Lovász, L.1
Simonovits, M.2
-
19
-
-
22144462788
-
Vertex and edge expansion properties for rapid mixing
-
Montenegro, R. (2005) Vertex and edge expansion properties for rapid mixing. Random Struct. Alg. 26 52-68.
-
(2005)
Random Struct. Alg.
, vol.26
, pp. 52-68
-
-
Montenegro, R.1
-
20
-
-
33748523135
-
A sharp isoperimetric inequality for convex bodies
-
to appear
-
Montenegro, R. (2006) A sharp isoperimetric inequality for convex bodies. Israel J. Math., to appear.
-
(2006)
Israel J. Math.
-
-
Montenegro, R.1
-
22
-
-
0003025668
-
Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem
-
Talagrand, M. (1993) Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem. Geom. Funct. Anal. 3 295-314.
-
(1993)
Geom. Funct. Anal.
, vol.3
, pp. 295-314
-
-
Talagrand, M.1
|