메뉴 건너뛰기




Volumn 3852 LNCS, Issue , 2006, Pages 315-324

A framework for 3D object recognition using the kernel constrained mutual subspace method

Author keywords

[No Author keywords available]

Indexed keywords

HIGH-DIMENSIONAL FEATURE; KERNEL CONSTRAINED MUTUAL SUBSPACE METHOD (KCMSM); KERNEL GENERALIZED DIFFERENCE SUBSPACE; MUTUAL SUBSPACE METHOD;

EID: 33744930580     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11612704_32     Document Type: Conference Paper
Times cited : (55)

References (11)
  • 3
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear principal component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A. and Müller, K.-R.: Nonlinear principal component analysis as a kernel eigenvalue problem. Neural Computation, vol. 10, (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 5
    • 10044235880 scopus 로고    scopus 로고
    • Kernel principal angles for classification machines with applications to image sequence interpretation
    • Wolf, L. and Shashua, A.: Kernel principal angles for classification machines with applications to image sequence interpretation. Proc. CVPR, (2003) 635-642
    • (2003) Proc. CVPR , pp. 635-642
    • Wolf, L.1    Shashua, A.2
  • 9
    • 0042441074 scopus 로고    scopus 로고
    • Analyzing appearance and contour based methods for object categorization
    • Leibe, B. and Schiele, B.: Analyzing appearance and contour based methods for object categorization. Proc. CVPR, (2003) 409-415
    • (2003) Proc. CVPR , pp. 409-415
    • Leibe, B.1    Schiele, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.