메뉴 건너뛰기




Volumn 43, Issue 3, 2006, Pages 429-435

New data visualization algorithm based on SOM

Author keywords

Data visualization; DPSOM; Himberg's contraction model; MDS; Position adjustable SOM; SOM

Indexed keywords

ALGORITHMS; DATA PROCESSING; INFORMATION SERVICES; VISUALIZATION;

EID: 33744738608     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: 10.1360/crad20060309     Document Type: Article
Times cited : (10)

References (20)
  • 3
    • 0033897901 scopus 로고    scopus 로고
    • Designing pixel-oriented visualization techniques: Theory and applications
    • D. A. Keim. Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans. Visualization and Computer Graphics, 2000, 6(1): 59-78
    • (2000) IEEE Trans. Visualization and Computer Graphics , vol.6 , Issue.1 , pp. 59-78
    • Keim, D.A.1
  • 4
    • 0035788895 scopus 로고    scopus 로고
    • Visualizing multi-dimensional clusters, trends, and outliers using star coordinates
    • New York: ACM Press
    • E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proc. 7th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining. New York: ACM Press, 2001. 107-116
    • (2001) Proc. 7th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining , pp. 107-116
    • Kandogan, E.1
  • 6
    • 84997909316 scopus 로고    scopus 로고
    • Visualization of high-dimensional data with relational perspective map
    • J. X. Z. Li. Visualization of high-dimensional data with relational perspective map. Information Visualization, 2004, 3(1): 49-59
    • (2004) Information Visualization , vol.3 , Issue.1 , pp. 49-59
    • Li, J.X.Z.1
  • 7
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kobonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kobonen, T.1
  • 8
    • 0348233391 scopus 로고    scopus 로고
    • New methods for self-organising map visual analysis
    • M. Rubio, V. Gimnez. New methods for self-organising map visual analysis. Neural Computation and Applications, 2003, 12(3/4): 142-152
    • (2003) Neural Computation and Applications , vol.12 , Issue.3-4 , pp. 142-152
    • Rubio, M.1    Gimnez, V.2
  • 9
    • 0002625320 scopus 로고    scopus 로고
    • Alternative ways for cluster visualization in self-organizing maps
    • Helsinki University of Technology
    • D. Merkl, A. Rauber. Alternative ways for cluster visualization in self-organizing maps. The Workshop on Self-Organizing Maps (WSOM'97), Helsinki University of Technology, 1997
    • (1997) The Workshop on Self-Organizing Maps (WSOM'97)
    • Merkl, D.1    Rauber, A.2
  • 11
    • 35048880582 scopus 로고    scopus 로고
    • Improvement of data visualization based on SOM
    • Berlin: Springer-Verlag
    • C. Shao, H. K. Huang. Improvement of data visualization based on SOM. In: Proe. Int'l Symposium on Neural Networks. Berlin: Springer-Verlag, 2004. 707-712
    • (2004) Proe. Int'l Symposium on Neural Networks , pp. 707-712
    • Shao, C.1    Huang, H.K.2
  • 12
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(22): 2319-2323
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 13
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(22): 2323-2326
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 14
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 15
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • J. Vesanto. SOM-based data visualization methods. Intelligent Data Analysis, 1999, 3(2): 111-126
    • (1999) Intelligent Data Analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 16
    • 0036128861 scopus 로고    scopus 로고
    • ViSOM - A novel method for multivariate data projection and structure visualization
    • H. Yin. ViSOM - A novel method for multivariate data projection and structure visualization. IEEE Trans. Neural networks, 2002, 13(1): 237-243
    • (2002) IEEE Trans. Neural networks , vol.13 , Issue.1 , pp. 237-243
    • Yin, H.1
  • 17
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic self-organizing maps with controlled growth for knowledge discovery
    • D. Alahakoon, S. K. Halgamuge, B. Sirinivasan. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Networks, 2000, 11(3): 601-614
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, D.1    Halgamuge, S.K.2    Sirinivasan, B.3
  • 19
    • 0033684991 scopus 로고    scopus 로고
    • A SOM based cluster visualization and its application for false coloring
    • Como, Italy
    • J. Himberg. A SOM based cluster visualization and its application for false coloring. Int'l Joint Conf. Neural Networks (IJCNN 2000), Como, Italy, 2000
    • (2000) Int'l Joint Conf. Neural Networks (IJCNN 2000)
    • Himberg, J.1
  • 20
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • A. Flexer. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 2001, 5(5): 373-384
    • (2001) Intelligent Data Analysis , vol.5 , Issue.5 , pp. 373-384
    • Flexer, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.