메뉴 건너뛰기




Volumn 50, Issue 12, 2006, Pages 3386-3404

Iterated importance sampling in missing data problems

Author keywords

Adaptive algorithms; Bayesian inference; Latent variable models; Population Monte Carlo; Rao Blackwellisation; Stochastic volatility model

Indexed keywords

ADAPTIVE ALGORITHMS; ITERATIVE METHODS; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 33646936073     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2005.07.018     Document Type: Article
Times cited : (30)

References (35)
  • 1
    • 33646898367 scopus 로고    scopus 로고
    • Andrieu, C., Robert, C., 2001. Controlled MCMC for optimal sampling. Technical Report 2001-25, Cahiers du CEREMADE, University Paris Dauphine.
  • 2
    • 0001711056 scopus 로고
    • ARCH models
    • Engle R.F., and MacFadden D. (Eds), Elsevier Sciences, North-Holland Series in Statistics and Probability, Amsterdam
    • Bollerslev T., Engle R., and Nelson D. ARCH models. In: Engle R.F., and MacFadden D. (Eds). The Handbook of Econometrics (1994), Elsevier Sciences, North-Holland Series in Statistics and Probability, Amsterdam
    • (1994) The Handbook of Econometrics
    • Bollerslev, T.1    Engle, R.2    Nelson, D.3
  • 5
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • Casella G., and Robert C. Rao-Blackwellisation of sampling schemes. Biometrika 83 1 (1996) 81-94
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 81-94
    • Casella, G.1    Robert, C.2
  • 6
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G., Hurn M., and Robert C. Computational and inferential difficulties with mixture posterior distributions. J. Amer. Statist. Assoc. 95 (2000) 957-970
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 7
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for stochastic volatility models
    • Chib S., Nadari F., and Shephard N. Markov chain Monte Carlo methods for stochastic volatility models. J. Econom. 108 (2002) 281-316
    • (2002) J. Econom. , vol.108 , pp. 281-316
    • Chib, S.1    Nadari, F.2    Shephard, N.3
  • 8
    • 33646922236 scopus 로고    scopus 로고
    • del Moral, P., Doucet, A., Peters, G., 2002. Sequential Monte Carlo samplers. Technical report, Department of Electrical Engineering, Cambridge University.
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster A.P., Laird N., and Rubin D. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 (1977) 1-38
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.2    Rubin, D.3
  • 10
    • 33646939464 scopus 로고    scopus 로고
    • Douc, R., Arnaud, G., Marin, J.-M., Robert, C., 2005. Convergence of adaptive sampling schemes. Technical Report 2005-6, Cahiers du CEREMADE, University Paris Dauphine.
  • 11
    • 33646942625 scopus 로고    scopus 로고
    • Edmond, M., Raftery, A., Russell, J., 2001. Easy computation of Bayes factors and normalizing constants for mixture models via mixture importance sampling. Technical Report 398, Department of Statistics, University of Washington, Seattle.
  • 12
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation
    • Engle R. Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50 (1982) 987-1007
    • (1982) Econometrica , vol.50 , pp. 987-1007
    • Engle, R.1
  • 14
    • 0037377458 scopus 로고    scopus 로고
    • Parallel algorithms for computing all possible subset regression models using the QR decomposition
    • Gatu C., and Kontoghiorghes E. Parallel algorithms for computing all possible subset regression models using the QR decomposition. Parallel Comput. 29 4 (2003) 505-521
    • (2003) Parallel Comput. , vol.29 , Issue.4 , pp. 505-521
    • Gatu, C.1    Kontoghiorghes, E.2
  • 15
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand A., and Smith A. Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 (1990) 398-409
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.1    Smith, A.2
  • 16
    • 84952177081 scopus 로고
    • Comment on Bayesian analysis of stochastic volatility models
    • Geweke J. Comment on Bayesian analysis of stochastic volatility models. J. Business Econom. Statist. 12 (1994) 397-399
    • (1994) J. Business Econom. Statist. , vol.12 , pp. 397-399
    • Geweke, J.1
  • 17
    • 0001400991 scopus 로고    scopus 로고
    • Stochastic volatility
    • Rao C., and Maddala G. (Eds), Elsevier Science, North-Holland Series in Statistics and Probability, Amsterdam
    • Ghysels E., Harvey A., and Renault E. Stochastic volatility. In: Rao C., and Maddala G. (Eds). Statistical Methods in Finance (1996), Elsevier Science, North-Holland Series in Statistics and Probability, Amsterdam
    • (1996) Statistical Methods in Finance
    • Ghysels, E.1    Harvey, A.2    Renault, E.3
  • 18
    • 0000324169 scopus 로고
    • Adaptative rejection sampling for Gibbs sampling
    • Gilks W., and Wild P. Adaptative rejection sampling for Gibbs sampling. Appl. Statist. 41 (1992) 337-348
    • (1992) Appl. Statist. , vol.41 , pp. 337-348
    • Gilks, W.1    Wild, P.2
  • 19
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario H., Saksman E., and Tamminen J. Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist. 14 (1999) 375-395
    • (1999) Comput. Statist. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 20
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario H., Saksman E., and Tamminen J. An adaptive Metropolis algorithm. Bernoulli 7 2 (2001) 223-242
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 21
    • 84952181953 scopus 로고
    • Bayesian analysis of stochastic volatility models (with discussion)
    • Jacquier R., Polson N., and Rossi P. Bayesian analysis of stochastic volatility models (with discussion). J. Business Econom. Statist. 12 (1994) 371-417
    • (1994) J. Business Econom. Statist. , vol.12 , pp. 371-417
    • Jacquier, R.1    Polson, N.2    Rossi, P.3
  • 22
    • 4043129651 scopus 로고    scopus 로고
    • Jordan, M.I., 2004. Graphical models. Statist. Sci. 19, 140-155.
  • 23
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: likelihood inference and comparison with ARCH models
    • Kim S., Shephard N., and Chib S. Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65 (1998) 361-393
    • (1998) Rev. Econom. Stud. , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 24
    • 0003226727 scopus 로고    scopus 로고
    • Parallel Algorithms for Linear Models: Numerical Methods and Estimation Problems
    • Kluwer Academic Publishers, Boston, MA
    • Kontoghiorghes E. Parallel Algorithms for Linear Models: Numerical Methods and Estimation Problems. Advances in Computational Economics vol. 15 (2000), Kluwer Academic Publishers, Boston, MA
    • (2000) Advances in Computational Economics , vol.15
    • Kontoghiorghes, E.1
  • 26
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparison of estimators and augmentation schemes
    • Liu J., Wong W., and Kong A. Covariance structure of the Gibbs sampler with applications to the comparison of estimators and augmentation schemes. Biometrika 81 (1994) 27-40
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.1    Wong, W.2    Kong, A.3
  • 30
    • 84986397907 scopus 로고
    • Fitting non-linear time series models, with applications to stochastic variance models
    • Shephard N. Fitting non-linear time series models, with applications to stochastic variance models. J. Appl. Econom. 8 (1993) 135-152
    • (1993) J. Appl. Econom. , vol.8 , pp. 135-152
    • Shephard, N.1
  • 31
    • 0038853197 scopus 로고
    • Partial non-Gaussian state space analysis of non-Gaussian measurement times series
    • Shephard N. Partial non-Gaussian state space analysis of non-Gaussian measurement times series. Biometrika 81 (1994) 115-131
    • (1994) Biometrika , vol.81 , pp. 115-131
    • Shephard, N.1
  • 32
    • 0001790102 scopus 로고    scopus 로고
    • Statistical aspects of ARCH and stochastic volatility
    • Cox D.R., Barndorff-Nielsen O.E., and Hinkley D.V. (Eds), Chapman & Hall
    • Shephard N. Statistical aspects of ARCH and stochastic volatility. In: Cox D.R., Barndorff-Nielsen O.E., and Hinkley D.V. (Eds). Time Series Models in Econometrics, Finance and Other Fields (1996), Chapman & Hall
    • (1996) Time Series Models in Econometrics, Finance and Other Fields
    • Shephard, N.1
  • 33
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement times series
    • Shephard N., and Pitt M. Likelihood analysis of non-Gaussian measurement times series. Biometrika 84 (1997) 653-667
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.2
  • 34
    • 84950758368 scopus 로고
    • The calculation of posterior distribution distributions by data augmentation (with discussion)
    • Tanner M., and Wong W. The calculation of posterior distribution distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 (1987) 528-550
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.2
  • 35
    • 84986754945 scopus 로고
    • Modelling stochastic volatility
    • Taylor S. Modelling stochastic volatility. Math. Finance 4 (1994) 183-204
    • (1994) Math. Finance , vol.4 , pp. 183-204
    • Taylor, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.