-
2
-
-
85016667352
-
-
MR 881:58028
-
[AC] A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. Inst. H. Poincaré, Anal. Non Linéaire 4 (1987), 275-296. MR 881:58028
-
(1987)
Solutions with Minimal Period for Hamiltonian Systems in a Potential Well, Ann. Inst. H. Poincaré, Anal. Non Linéaire
, vol.4
, pp. 275-296
-
-
Ambrosetti, A.1
Coti Zelati, V.2
-
16
-
-
0002295140
-
-
[GL] I. M. Gel'fand and V. B. Lidskiï, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Uspekhi Mat. Nauk 10 (1955), no. 1, 3-40;
-
On the Structure of the Regions of Stability of Linear Canonical Systems of Differential Equations with Periodic Coefficients, Uspekhi Mat. Nauk
, vol.10
, Issue.1
, pp. 3-40
-
-
Gel'Fand, I.M.1
Lidskiï, V.B.2
-
26
-
-
0001630228
-
-
MR 92d:58171
-
[Loi] Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sei. China Ser. A 33 (1990), 1409-1419. MR 92d:58171
-
(1990)
Maslov-type Index, Degenerate Critical Points, and Asymptotically Linear Hamiltonian Systems, Sei. China Ser. a
, vol.33
, pp. 1409-1419
-
-
Long, Y.1
-
28
-
-
33646877971
-
-
(Nagoya, 1990, K. Shiraiwa, ed.), World Sei. Publ-, Singapore, MR 93f:58202
-
[Lo3] ____, Maslov-type index theory and asymptotically linear Hamiltonian systems, Dynamical Systems and Related Topics (Nagoya, 1990, K. Shiraiwa, ed.), World Sei. Publ-, Singapore, 1991, pp. 333-341. MR 93f:58202
-
(1991)
Maslov-type Index Theory and Asymptotically Linear Hamiltonian Systems, Dynamical Systems and Related Topics
, pp. 333-341
-
-
-
29
-
-
33646886465
-
-
K. C. Chang et al., eds., World Sei. Publ., Singapore
-
[Lo4] ____, Estimates on the minimal period for periodic solutions of autonomous superquadratic second order Hamiltonian systems, In Nonlinear Analysis and Microlocal Analysis (K. C. Chang et al., eds.), World Sei. Publ., Singapore, 1992, pp. 168-175.
-
(1992)
Estimates on the Minimal Period for Periodic Solutions of Autonomous Superquadratic Second order Hamiltonian Systems, in Nonlinear Analysis and Microlocal Analysis
, pp. 168-175
-
-
-
35
-
-
33646873376
-
-
[LD] Y. Long and D. Dong, Normal forms of symplectic matrices, Preprint, Nankai Inst. Math., Nankai Univ., 1995.
-
(1995)
Normal Forms of Symplectic Matrices, Preprint, Nankai Inst. Math., Nankai Univ.
-
-
Long, Y.1
Dong, D.2
-
36
-
-
0002182215
-
-
(S. Albeverio et al., eds.), World Sei. Publ., Singapore, . MR 92j:58019
-
[LZ] Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes Physics and Geometry (S. Albeverio et al., eds.), World Sei. Publ., Singapore, 1990, pp. 528-563. MR 92j:58019
-
(1990)
Morse Theory for Forced Oscillations of Asymptotically Linear Hamiltonian Systems, Stochastic Processes Physics and Geometry
, pp. 528-563
-
-
Long, Y.1
Zehnder, E.2
-
39
-
-
33646876060
-
-
MR 87j:58024
-
[Ra2] ____, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. Math., no. 65, Amer. Math. Soc., Providence, RI, 1986. MR 87j:58024
-
(1986)
Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. Math., No. 65, Amer. Math. Soc., Providence, RI
, vol.65
-
-
|