메뉴 건너뛰기




Volumn 65, Issue 4, 2006, Pages 825-840

Triple positive solutions for a class of boundary value problems for second-order neutral functional differential equations

Author keywords

Boundary value problem; Fixed point theorem; Neutral functional differential equation; Triple positive solution

Indexed keywords

BOUNDARY CONDITIONS; DIFFERENTIAL EQUATIONS; NONLINEAR EQUATIONS; PROBLEM SOLVING; THEOREM PROVING;

EID: 33646840475     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.10.015     Document Type: Article
Times cited : (5)

References (13)
  • 1
    • 0035426671 scopus 로고    scopus 로고
    • Three positive fixed points of nonlinear operators on ordered Banach spaces
    • Avery R.I., and Peeterson A.C. Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42 (2001) 313-322
    • (2001) Comput. Math. Appl. , vol.42 , pp. 313-322
    • Avery, R.I.1    Peeterson, A.C.2
  • 2
    • 0002418596 scopus 로고    scopus 로고
    • A generalization of the Leggett-Williams fixed point theorem
    • Avery R.I. A generalization of the Leggett-Williams fixed point theorem. Math. Sci. Res. Hot-Line 2 (1998) 9-14
    • (1998) Math. Sci. Res. Hot-Line , vol.2 , pp. 9-14
    • Avery, R.I.1
  • 3
    • 18444372662 scopus 로고    scopus 로고
    • Triple positive solutions for a class of boundary value problems of second-order functional differential equations
    • Shu X.B., and Xu Y.T. Triple positive solutions for a class of boundary value problems of second-order functional differential equations. Nonlinear Anal. 61 8 (2005) 1401-1411
    • (2005) Nonlinear Anal. , vol.61 , Issue.8 , pp. 1401-1411
    • Shu, X.B.1    Xu, Y.T.2
  • 4
    • 0028494073 scopus 로고
    • Boundary value problems for singular second-order functional differential equations
    • Erbe L.H., and Kong Q.K. Boundary value problems for singular second-order functional differential equations. J. Comput. Appl. Math. 53 (1994) 377-388
    • (1994) J. Comput. Appl. Math. , vol.53 , pp. 377-388
    • Erbe, L.H.1    Kong, Q.K.2
  • 5
    • 18444417249 scopus 로고
    • Boundary value problems for second order functional differential equations
    • Lalli B.S., and Zhang B.G. Boundary value problems for second order functional differential equations. Ann. Differential Equations 8 (1992) 261-268
    • (1992) Ann. Differential Equations , vol.8 , pp. 261-268
    • Lalli, B.S.1    Zhang, B.G.2
  • 6
    • 0000165519 scopus 로고
    • Existence results for differential delay equations-I
    • Lee J.W., and O'Regan D. Existence results for differential delay equations-I. J. Differential Equations 102 (1993) 342-359
    • (1993) J. Differential Equations , vol.102 , pp. 342-359
    • Lee, J.W.1    O'Regan, D.2
  • 7
    • 0002049318 scopus 로고
    • Existence results for differential delay equations-II
    • Lee J.W., and O'Regan D. Existence results for differential delay equations-II. Nonlinear Anal. 17 (1991) 683-702
    • (1991) Nonlinear Anal. , vol.17 , pp. 683-702
    • Lee, J.W.1    O'Regan, D.2
  • 8
    • 0037664791 scopus 로고
    • An existence principle for boundary value problems for second order functional differential equations
    • Ntouyas S.K., Sficas Y.G., and Tsamatos P.Ch. An existence principle for boundary value problems for second order functional differential equations. Nonlinear Anal. 20 (1993) 215-222
    • (1993) Nonlinear Anal. , vol.20 , pp. 215-222
    • Ntouyas, S.K.1    Sficas, Y.G.2    Tsamatos, P.Ch.3
  • 9
    • 84978998530 scopus 로고    scopus 로고
    • Boundary value problems for second order mixed type functional differential equations
    • Weng P.X. Boundary value problems for second order mixed type functional differential equations. Appl. Math. J. Chinese Univ. 12B (1997) 155-164
    • (1997) Appl. Math. J. Chinese Univ. , vol.12 B , pp. 155-164
    • Weng, P.X.1
  • 10
    • 3042696725 scopus 로고    scopus 로고
    • Triple positive solutions for a class of two-point boundary-value problems
    • Bai Z., Wang Y., and Ge W. Triple positive solutions for a class of two-point boundary-value problems. Electron. J. Differential Equations (2004) 1-8
    • (2004) Electron. J. Differential Equations , pp. 1-8
    • Bai, Z.1    Wang, Y.2    Ge, W.3
  • 13
    • 0000394603 scopus 로고
    • Multiple positive fixed points of nonlinear operators on ordered Banach spaces
    • Leggett R.W., and Williams L.R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. 28 (1979) 673-688
    • (1979) Indiana Univ. Math. , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.