메뉴 건너뛰기




Volumn 3, Issue 1, 2006, Pages 21-31

Burst detection using hydraulic data from water distribution systems with artificial neural networks

Author keywords

Artificial neural networks; Field trial; Hydraulic sensors; Leakage detection; Water supply

Indexed keywords

COMPUTER SIMULATION; FLOW OF WATER; NEURAL NETWORKS; TIME SERIES ANALYSIS; WATER DISTRIBUTION SYSTEMS; WATER SUPPLY;

EID: 33646816424     PISSN: 1573062X     EISSN: 17449006     Source Type: Journal    
DOI: 10.1080/15730620600578538     Document Type: Article
Times cited : (117)

References (35)
  • 1
    • 0035383832 scopus 로고    scopus 로고
    • Constrained state estimation with applications in water distribution network monitoring
    • Andersen, J. and Powell, R. and Marsh, J. (2001) Constrained state estimation with applications in water distribution network monitoring Int. J. Systems Science, 32, pp. 807-816.
    • (2001) Int. J. Systems Science , vol.32 , pp. 807-816
    • Andersen, J.1    Powell, R.2    Marsh, J.3
  • 4
    • 0026748143 scopus 로고
    • Application of neural networks to water and wastewater treatment plant operation
    • Boger, Z. (1992) Application of neural networks to water and wastewater treatment plant operation Instrument Soc. Am. Trans., 31, pp. 25-33.
    • (1992) Instrument Soc. Am. Trans. , vol.31 , pp. 25-33
    • Boger, Z.1
  • 6
    • 84940644171 scopus 로고
    • Neural networks for water demand time series forecasting
    • Cubero, R.(). Neural networks for water demand time series forecasting. Proceedings International. Workshop IWANNI 1991. In [pp. 453-460].
    • (1991) Proceedings International. Workshop IWANNI , pp. 453-460
    • Cubero, R.1
  • 7
    • 0012722022 scopus 로고
    • Department of the Environment and the National Water Council. No. 26, DWI0190. London UK., Technical Committee Report
    • Department of the Environment and the National Water Council.(). Leakage control policy and practice, technical committee report, No. 26, DWI0190. LondonUK1980. In [pp.].
    • (1980) Leakage Control Policy and Practice
  • 8
    • 0033197896 scopus 로고    scopus 로고
    • Neural networks based decision support in presence of uncertainties
    • Gabrys, B. and Bargiela, A. (1999) Neural networks based decision support in presence of uncertainties J. Water Res. Planning Mgmt., 125, pp. 272-280.
    • (1999) J. Water Res. Planning Mgmt. , vol.125 , pp. 272-280
    • Gabrys, B.1    Bargiela, A.2
  • 9
    • 0000706678 scopus 로고
    • Using backpropagation with temporal windows to learn the dynamics of CMU direct-drive arm
    • Goldberg, K. and Pearlmutter, B. (1989) Using backpropagation with temporal windows to learn the dynamics of CMU direct-drive arm Advances Neural Information Processing Systems, 1, pp. 356-363.
    • (1989) Advances Neural Information Processing Systems , vol.1 , pp. 356-363
    • Goldberg, K.1    Pearlmutter, B.2
  • 10
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman, R. and Sejnowski, T. (1988) Analysis of hidden units in a layered network trained to classify sonar targets Neural Networks, 1, pp. 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.1    Sejnowski, T.2
  • 13
    • 85156223398 scopus 로고    scopus 로고
    • A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split
    • Kearns, M. (1996) A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split Advances Neural Information Processing Systems, 8, pp. 183-189.
    • (1996) Advances Neural Information Processing Systems , vol.8 , pp. 183-189
    • Kearns, M.1
  • 14
    • 0003645482 scopus 로고
    • Non-linear signal processing using neural networks
    • Report No. LA-UR-87-2662. In. Los Alamos New Mexico: Los Alamos National Laboratory
    • Lapedes, A. and Farber, R.(1987) Non-linear signal processing using neural networks. Report No. LA-UR-87-2662. In. Los Alamos New Mexico: Los Alamos National Laboratory.
    • (1987)
    • Lapedes, A.1    Farber, R.2
  • 16
    • 2042421895 scopus 로고    scopus 로고
    • Research and development proposal for an on-line leakage detection system
    • YWS internal report
    • Machell, J.(1997) Research and development proposal for an on-line leakage detection system. YWS internal report
    • (1997)
    • Machell, J.1
  • 18
    • 33646775242 scopus 로고
    • Implementation of a Kohonen network and an expert system interface
    • MSc thesis. Univeristy of Bradford
    • Mounce, S.(1994). Implementation of a Kohonen network and an expert system interface. MSc thesis. In [pp.]. 1994
    • (1994)
    • Mounce, S.1
  • 20
    • 0042329657 scopus 로고    scopus 로고
    • Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system
    • Mounce, S. and Khan, A. and Wood, A. and Day, A. and Widdop, P. and Machell, J. (2003) Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system Int. J. Information Fusion, 4, pp. 217-229.
    • (2003) Int. J. Information Fusion , vol.4 , pp. 217-229
    • Mounce, S.1    Khan, A.2    Wood, A.3    Day, A.4    Widdop, P.5    Machell, J.6
  • 22
    • 33646786702 scopus 로고    scopus 로고
    • Leakage figures
    • OFWAT. Available online at: www.ofwat.gov.uk (accessed)
    • OFWAT. Leakage figures. Available online at: www.ofwat.gov.uk (accessed 2005)
    • (2005)
  • 24
    • 0022471098 scopus 로고
    • Learning representations of back-propagation errors
    • Rumelhart, D. and Hinton, G. and Williams, R. (1986) Learning representations of back-propagation errors Nature, 323, pp. 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 26
    • 0032780932 scopus 로고    scopus 로고
    • Predicting water quality in distribution using artificial neural networks
    • Skipworth, P. and Saul, A. and Machell, J. (1999) Predicting water quality in distribution using artificial neural networks ICE J Water Maritime Energy, 136, pp. 1-8.
    • (1999) ICE J Water Maritime Energy , vol.136 , pp. 1-8
    • Skipworth, P.1    Saul, A.2    Machell, J.3
  • 29
    • 4243464856 scopus 로고
    • State formation in neural networks for handling temporal information
    • PhD thesis
    • Ulbricht, C.(1995). State formation in neural networks for handling temporal information. PhD thesis. In [pp.].
    • (1995)
    • Ulbricht, C.1
  • 35
    • 33646806377 scopus 로고    scopus 로고
    • Water operational research centre web site
    • WORC, State estimation. Brunel University. Available online at: (accessed)
    • WORC, State estimation. Water operational research centre web site. Brunel University. Available online at: http://www.brunel.ac.uk/depts/ mes/Research/Groups/WORC/state.htm (accessed 1999)
    • (1999)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.