-
2
-
-
0036740219
-
-
Some recent literatures
-
Some recent literatures. Veerman J.J.N., Klein J., Aben R.W.N., Scheeren H.W., Kruse C.G., Van Maarseveen J.H., Rutjes F.P.J.T., and Hiemstra H. Eur. J. Org. Chem. (2002) 3133
-
(2002)
Eur. J. Org. Chem.
, pp. 3133
-
-
Veerman, J.J.N.1
Klein, J.2
Aben, R.W.N.3
Scheeren, H.W.4
Kruse, C.G.5
Van Maarseveen, J.H.6
Rutjes, F.P.J.T.7
Hiemstra, H.8
-
3
-
-
0042009668
-
-
Andrews D.M., Borthwick A.D., Chaignot H., Jones P.S., Robinson J.E., Shah P., Slater M.J., and Upton R.J. Synthesis (2003) 1722
-
(2003)
Synthesis
, pp. 1722
-
-
Andrews, D.M.1
Borthwick, A.D.2
Chaignot, H.3
Jones, P.S.4
Robinson, J.E.5
Shah, P.6
Slater, M.J.7
Upton, R.J.8
-
10
-
-
33646885215
-
-
Shono T., Matsumura Y., Onomura O., Kanazawa T., and Habuka M. Chem. Lett. 1101 (1984)
-
(1984)
Chem. Lett.
, vol.1101
-
-
Shono, T.1
Matsumura, Y.2
Onomura, O.3
Kanazawa, T.4
Habuka, M.5
-
11
-
-
0033614861
-
-
Matsumura Y., Kanda Y., Shirai K., Onomura O., and Maki T. Org. Lett. 1 (1999) 175
-
(1999)
Org. Lett.
, vol.1
, pp. 175
-
-
Matsumura, Y.1
Kanda, Y.2
Shirai, K.3
Onomura, O.4
Maki, T.5
-
12
-
-
0034665562
-
-
Matsumura Y., Kanda Y., Shirai K., Onomura O., and Maki T. Tetrahedron 56 (2000) 7411
-
(2000)
Tetrahedron
, vol.56
, pp. 7411
-
-
Matsumura, Y.1
Kanda, Y.2
Shirai, K.3
Onomura, O.4
Maki, T.5
-
13
-
-
0037156390
-
-
Onomura O., Kanda Y., Nakamura Y., Maki T., and Matsumura Y. Tetrahedron Lett. 43 (2002) 3229
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 3229
-
-
Onomura, O.1
Kanda, Y.2
Nakamura, Y.3
Maki, T.4
Matsumura, Y.5
-
14
-
-
0038539446
-
-
Matsumura Y., Onomura O., Suzuki H., Furukubo S., Maki T., and Li C.-J. Tetrahedron Lett. 44 (2003) 5519
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 5519
-
-
Matsumura, Y.1
Onomura, O.2
Suzuki, H.3
Furukubo, S.4
Maki, T.5
Li, C.-J.6
-
19
-
-
0037045239
-
-
Long J., Hu J., Shen X., Ji B., and Ding K. J. Am. Chem. Soc. 124 (2002) 10
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 10
-
-
Long, J.1
Hu, J.2
Shen, X.3
Ji, B.4
Ding, K.5
-
21
-
-
0037156418
-
-
McCluskey A., Robinson P.J., Hill T., Scott J.L., and Edwards J.K. Tetrahedron Lett. 43 (2002) 3117
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 3117
-
-
McCluskey, A.1
Robinson, P.J.2
Hill, T.3
Scott, J.L.4
Edwards, J.K.5
-
30
-
-
0001404364
-
-
Shono T., Matsumura Y., Uchida K., Tsubata K., and Makino A. J. Org. Chem. 49 (1984) 300
-
(1984)
J. Org. Chem.
, vol.49
, pp. 300
-
-
Shono, T.1
Matsumura, Y.2
Uchida, K.3
Tsubata, K.4
Makino, A.5
-
32
-
-
0003439004
-
-
Nagasaka T., Nishida S., Sugihara S., Kawahara T., Adachi K., and Hamaguchi F. Heterocycles 39 (1994) 171
-
(1994)
Heterocycles
, vol.39
, pp. 171
-
-
Nagasaka, T.1
Nishida, S.2
Sugihara, S.3
Kawahara, T.4
Adachi, K.5
Hamaguchi, F.6
-
34
-
-
33646862989
-
-
4 (0.1 mmol, 0.197 mL) at room temperature. After stirring for 12 h, the reaction mixture was subjected on chromatography (silica gel, ethyl acetate: n-hexane=1:3) to afford 3ap in 89% yield.
-
-
-
-
35
-
-
33646889284
-
-
4 (0.1 equiv.) was stable.
-
-
-
-
36
-
-
33646888399
-
-
2 (entries 6 and 9) is hardly rationalized.
-
-
-
-
37
-
-
0008967669
-
-
The dependency of the yields of 3ap-3r on nucleophiles (4p-r) (entries 4, 8 and 11) can be explained in terms of the high degree of enolization of 1,3-diketones and β-keto esters in comparison with malonic acid esters
-
The dependency of the yields of 3ap-3r on nucleophiles (4p-r) (entries 4, 8 and 11) can be explained in terms of the high degree of enolization of 1,3-diketones and β-keto esters in comparison with malonic acid esters. Gero A. J. Org. Chem. 19 (1954) 1960
-
(1954)
J. Org. Chem.
, vol.19
, pp. 1960
-
-
Gero, A.1
-
38
-
-
33646872420
-
-
3, δ) spectral data of new compounds are shown below. 3as: 1.60-2.33 (m, 4H), 2.19 (s, 3H), 2.85-3.80 (m, 2H), 3.66 and 3.69 (2s, 3H), 4.30-4.40, 5.10-5.18 and 5.58-5.62 (3m, 1H), 4.65-4.80 (m, 1H), 7.38-7.65 (m, 3H), 7.82-8.11 (m, 2H). 3at: 1.62-1.82 (m, 2H), 2.00-2.28 (m, 1H), 2.35-2.48 (m, 1H), 2.85-3.10 (m, 1H), 3.25-3.50 (m, 1H), 3.58 and 3.61 (2s, 3H), 4.58-4.82 (m, 1H), 5.78 and 6.40 (2d, J=4.0 and 4.0 Hz, 0.25H and 0.75H), 7.38-7.62 (m, 6H), 7.85-8.05 (m, 4H). 3au: 1.49-2.63 (m, 10H), 3.40-3.80 (m, 5.5H), 4.69-4.78 (m, 1H), 10.78 (br s, 0.5H). 3bp: 1.78-2.30 (m, 4H), 2.17 (br s, 6H), 3.30-3.40 (m, 1H), 3.45-3.52 (m, 1H), 4.00-4.50 (m, 1H), 4.45 (br s, 1H), 5.13 (br s, 2H), 7.36 (s, 5H). 3bt: 1.62-2.50 (m, 4H), 2.90-3.00 (m, 1H), 3.10-3.55 (m, 1H), 4.60-4.75 (m, 1H), 4.98-5.30 (m, 2H), 7.20-7.45 (m, 10H), 7.50-7.58 (m, 2H), 7.65-7.75 (m, 1H), 7.90-8.00 (m, 2H).
-
-
-
-
43
-
-
33646861375
-
-
The ee's were determined by a chiral HPLC method: Daicel Chiralcel OJ (4.6 mmø, 25 cm), n-hexane, flow rate: 1.0 mL/min, detection at 210 nm, retention time: 10 min for (R)-(+)-isomer and 13 min for (S)-(-)-isomer.
-
-
-
|