메뉴 건너뛰기




Volumn I, Issue , 2005, Pages 363-366

Particle swarm optimization learning fuzzy systems design

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATION THEORY; COMPUTER SIMULATION; FUZZY SETS; NONLINEAR SYSTEMS; PARAMETER ESTIMATION; PROBLEM SOLVING;

EID: 33646786078     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (17)
  • 2
    • 0030645460 scopus 로고    scopus 로고
    • The particle swarm: Social adaptation of knowledge
    • Indianapolis, IN, Apr.
    • J. Kennedy, The particle swarm: Social adaptation of knowledge, in Proc. 1997 Int. Conf. Evolutionary Computation, Indianapolis, IN, Apr. 1997, pp. 303-308.
    • (1997) Proc. 1997 Int. Conf. Evolutionary Computation , pp. 303-308
    • Kennedy, J.1
  • 3
    • 2942539776 scopus 로고    scopus 로고
    • A particle swarm optimization approach for optimum design of PID controller in AVR system
    • Jim.
    • Z.-L Gaing., A Particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Trans. on Energy Conversion, vol. 19, no. 2, pp. 384-391, Jim. 2004.
    • (2004) IEEE Trans. on Energy Conversion , vol.19 , Issue.2 , pp. 384-391
    • Gaing, Z.-L.1
  • 4
    • 0037291006 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization for distribution state estimation
    • Feb.
    • S. Naka, T. Genji, T. Yura, and Y. Fukuyama, A hybrid particle swarm optimization for distribution state estimation, IEEE Trans. on Power Systems, vol. 18, no. 1, pp. 60-68, Feb. 2003.
    • (2003) IEEE Trans. on Power Systems , vol.18 , Issue.1 , pp. 60-68
    • Naka, S.1    Genji, T.2    Yura, T.3    Fukuyama, Y.4
  • 5
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
    • Apr.
    • C.-F. Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Trans. Systems, Man and Cybernetics, vol. 34, no. 2, pp. 997-1006, Apr. 2003.
    • (2003) IEEE Trans. Systems, Man and Cybernetics , vol.34 , Issue.2 , pp. 997-1006
    • Juang, C.-F.1
  • 6
  • 7
    • 3142749146 scopus 로고    scopus 로고
    • Learning to play games using a PSO-based competitive learning approach
    • June
    • L. Messerschmidt, and A.P. Engelbrecht, Learning to play games using a PSO-based competitive learning approach, IEEE Trans. on Evolutionary Computation, vol. 8, no. 3, pp. 280-288, June 2004.
    • (2004) IEEE Trans. on Evolutionary Computation , vol.8 , Issue.3 , pp. 280-288
    • Messerschmidt, L.1    Engelbrecht, A.P.2
  • 8
    • 0000223431 scopus 로고    scopus 로고
    • Comparison between genetic algorithms and particle swarm optimization
    • Auchorage, AK, May
    • R.C. Eberhart and Y. Shi, Comparison between genetic algorithms and particle swarm optimization, in Proc. IEEE Int. Conf. Evol. Comput., Auchorage, AK, May 1998, pp. 84-89.
    • (1998) Proc. IEEE Int. Conf. Evol. Comput. , pp. 84-89
    • Eberhart, R.C.1    Shi, Y.2
  • 11
    • 0042864639 scopus 로고    scopus 로고
    • Fuzzy model predictive control of non-linear process using genetic algorithms
    • H. Sarimveis and G. Bafas, Fuzzy model predictive control of non-linear process using genetic algorithms, Fuzzy sets and systems, vol. 139, pp. 59-80, 2003.
    • (2003) Fuzzy Sets and Systems , vol.139 , pp. 59-80
    • Sarimveis, H.1    Bafas, G.2
  • 12
    • 0030215076 scopus 로고    scopus 로고
    • Fuzzy function approximation with ellipsoidal rules
    • Aug.
    • J.A. Dickson and B. Kosko, Fuzzy function approximation with ellipsoidal rules, IEEE Trans. on Systems, Man and Cybernetics, vol. 26, no. 4, pp. 542-560, Aug. 1996.
    • (1996) IEEE Trans. on Systems, Man and Cybernetics , vol.26 , Issue.4 , pp. 542-560
    • Dickson, J.A.1    Kosko, B.2
  • 13
    • 0033177661 scopus 로고    scopus 로고
    • Function approximation based on fuzzy rules extracted from partitioned numerical data
    • Aug.
    • R. Thawonmas and S. Abe, Function approximation based on fuzzy rules extracted from partitioned numerical data, IEEE Trans. on Systems, Man and Cybernetics, vol. 29, no. 4, pp. 525-534, Aug. 1999.
    • (1999) IEEE Trans. on Systems, Man and Cybernetics , vol.29 , Issue.4 , pp. 525-534
    • Thawonmas, R.1    Abe, S.2
  • 14
    • 0031275772 scopus 로고    scopus 로고
    • Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network
    • Aug.
    • Y. Lin, G.A. Cunningham III, and S.V. Coggeshall, Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network, IEEE Trans. on Fuzzy Systems, vol. 5, pp. 614-621, Aug. 1997.
    • (1997) IEEE Trans. on Fuzzy Systems , vol.5 , pp. 614-621
    • Lin, Y.1    Cunningham III, G.A.2    Coggeshall, S.V.3
  • 15
    • 33646796091 scopus 로고    scopus 로고
    • Self generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization
    • accepted
    • H. M. Feng, Self generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization, Cybernetics and Systems: An International Journal (accepted).
    • Cybernetics and Systems: An International Journal
    • Feng, H.M.1
  • 16
    • 0026925677 scopus 로고
    • Self-learning fuzzy controller based on temporal back propagation
    • J.-S.R. Jang, Self-learning fuzzy controller based on temporal back propagation, IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 714-723, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.-S.R.1
  • 17
    • 0000906136 scopus 로고    scopus 로고
    • Input selection and partition validation for fuzzy modeling using neural network
    • D.A. Linkens and M.-Y. Chen, Input selection and partition validation for fuzzy modeling using neural network, Fuzzy Sets and Systems, Vol. 107, pp. 299-308, 1999.
    • (1999) Fuzzy Sets and Systems , vol.107 , pp. 299-308
    • Linkens, D.A.1    Chen, M.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.