메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 471-489

On the convergence of successive linear-quadratic programming algorithms

Author keywords

Global convergence theory; Nonlinear optimization; Penalty parameter updates; Sequential linear programming

Indexed keywords

GLOBAL CONVERGENCE THEORY; NONLINEAR OPTIMIZATION; PENALTY PARAMETER UPDATES; SEQUENTIAL LINEAR PROGRAMMING;

EID: 33646718636     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/S1052623403426532     Document Type: Article
Times cited : (43)

References (16)
  • 1
    • 19844377201 scopus 로고    scopus 로고
    • An active set algorithm for nonlinear programming using linear programming and equality constrained subproblems
    • R. H. BYRD, N. I. M. GOULD, J. NOCEDAL, AND R. A. WALTZ, An active set algorithm for nonlinear programming using linear programming and equality constrained subproblems, Math. Program., 100 (2004), pp. 27-48.
    • (2004) Math. Program. , vol.100 , pp. 27-48
    • Byrd, R.H.1    Gould, N.I.M.2    Nocedal, J.3    Waltz, R.A.4
  • 3
    • 14944352190 scopus 로고    scopus 로고
    • On the global convergence of an SLP-filter algorithm that takes EQP steps
    • C. M. CHIN AND R. FLETCHER, On the global convergence of an SLP-filter algorithm that takes EQP steps, Math. Program., 96 (2003), pp. 161-177.
    • (2003) Math. Program , vol.96 , pp. 161-177
    • Chin, C.M.1    Fletcher, R.2
  • 5
    • 0042455890 scopus 로고
    • A penalty function method converging directly to a constrained optimum
    • A. R. CONN AND T. PIETRZYKOWSKI, A penalty function method converging directly to a constrained optimum, SIAM J. Numer. Anal., 14 (1977), pp. 348-375.
    • (1977) SIAM J. Numer. Anal. , vol.14 , pp. 348-375
    • Conn, A.R.1    Pietrzykowski, T.2
  • 7
    • 0001556338 scopus 로고    scopus 로고
    • Nonlinear programming without a penalty function
    • R. FLETCHER AND S. LEYFFER, Nonlinear programming without a penalty function, Math. Program., 91 (2002), pp. 239-269.
    • (2002) Math. Program , vol.91 , pp. 239-269
    • Fletcher, R.1    Leyffer, S.2
  • 8
    • 0024641718 scopus 로고
    • Nonlinear programming and non-smooth optimization by successive linear programming
    • R. FLETCHER AND E. SAINZ DE LA MAZA, Nonlinear programming and non-smooth optimization by successive linear programming, Math. Program., 43 (1989), pp. 235-256.
    • (1989) Math. Program , vol.43 , pp. 235-256
    • Fletcher, R.1    De La Maza, E.S.2
  • 10
    • 34250270048 scopus 로고
    • Exact penalty functions in nonlinear programming
    • S. P. HAN AND O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math. Program., 17 (1979), pp. 251-269.
    • (1979) Math. Program , vol.17 , pp. 251-269
    • Han, S.P.1    Mangasarian, O.L.2
  • 11
    • 0016990060 scopus 로고
    • Feasible directions algorithms for optimisation problems with equality and inequality constraints
    • D. Q. MAYNE AND E. POLAK, Feasible directions algorithms for optimisation problems with equality and inequality constraints, Math. Program., 11 (1976), pp. 67-80.
    • (1976) Math. Program , vol.11 , pp. 67-80
    • Mayne, D.Q.1    Polak, E.2
  • 12
    • 0001852780 scopus 로고
    • An exact potential method for constrained maxima
    • T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal., 6 (1969), pp, 299-304.
    • (1969) SIAM J. Numer. Anal. , vol.6 , pp. 299-304
    • Pietrzykowski, T.1
  • 15
    • 0022010767 scopus 로고
    • Conditions for convergence of trust region algorithms for non-smooth optimization
    • Y. YUAN, Conditions for convergence of trust region algorithms for non-smooth optimization, Math. Program., 31 (1985), pp. 220-228.
    • (1985) Math. Program. , vol.31 , pp. 220-228
    • Yuan, Y.1
  • 16
    • 21844501023 scopus 로고
    • On the convergence of a new trust region algorithm
    • Y. YUAN, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), pp. 515-539.
    • (1995) Numer. Math. , vol.70 , pp. 515-539
    • Yuan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.