-
1
-
-
0033285080
-
Multiway cut for stereo and motion with slanted surfaces
-
S. Birchfield and C. Tomasi: Multiway cut for stereo and motion with slanted surfaces. ICCV (1999) 489-495.
-
(1999)
ICCV
, pp. 489-495
-
-
Birchfield, S.1
Tomasi, C.2
-
2
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih: Fast approximate energy minimization via graph cuts. IEEE-PAMI, 23 (2001) 1222-1239.
-
(2001)
IEEE-PAMI
, vol.23
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
3
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
-
Y. Boykov and M.-P. Jolly: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. ICCV, I, (2001) 105112.
-
(2001)
ICCV
, vol.1
, pp. 105112
-
-
Boykov, Y.1
Jolly, M.-P.2
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc. B 39 (1977) 138.
-
(1977)
J. Roy. Statist. Soc. B
, vol.39
, pp. 138
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
5
-
-
33646589524
-
-
John Wiley & Sons, Inc., New York
-
R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd. ed., John Wiley & Sons, Inc., New York, 2001
-
(2001)
Pattern Classification, 2nd. Ed.
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
6
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and Bayesian restoration of images
-
S. Geman and D. Geman: Stochastic relaxation, Gibbs distributions and Bayesian restoration of images. IEEE-PAMI.6 (1984) 721-741.
-
(1984)
IEEE-PAMI.
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
7
-
-
0000111836
-
Exact maximum a posteriori estimation for binary images
-
D. Greig, B. Porteous, and A. Seheult: Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B, 51 (1989) 271279.
-
(1989)
J. R. Statist. Soc. B
, vol.51
, pp. 271279
-
-
Greig, D.1
Porteous, B.2
Seheult, A.3
-
9
-
-
84949969441
-
What energy functions can be minimized via graph cuts
-
V. Kolmogorov and R. Zbih: What energy functions can be minimized via graph cuts. ECCV III (2002), 65-81.
-
(2002)
ECCV III
, pp. 65-81
-
-
Kolmogorov, V.1
Zbih, R.2
-
11
-
-
84950881632
-
Probabilistic solution of ill-posed problems in computational vision
-
J. Marroquin, S. Mitter and T. Poggio: Probabilistic solution of ill-posed problems in computational vision. J. Am. Stat. Asoc., 82 (1987) 76-89.
-
(1987)
J. Am. Stat. Asoc.
, vol.82
, pp. 76-89
-
-
Marroquin, J.1
Mitter, S.2
Poggio, T.3
-
14
-
-
1042289276
-
Hidden Markov measure field models for image segmentation
-
J. L. Marroquin, E. Arce and S. Botello: Hidden Markov Measure Field Models for Image Segmentation. IEEE-PAMI, 25, (2003) 1380-1387.
-
(2003)
IEEE-PAMI
, vol.25
, pp. 1380-1387
-
-
Marroquin, J.L.1
Arce, E.2
Botello, S.3
-
15
-
-
0003791453
-
-
M. Jordan (ed.) Dordrecht: KJuwer Academic Publishers, Boston MA
-
R. Neal and R. Barry: A vew of the EM algorithm that justifies incremental, sparse, and others variants, in Learning in Graphical Models, M. Jordan (ed.) Dordrecht: KJuwer Academic Publishers, Boston MA. (1998) 355-368.
-
(1998)
A Vew of the em Algorithm That Justifies Incremental, Sparse, and Others Variants, in Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.1
Barry, R.2
-
17
-
-
0031646504
-
An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback
-
O. Picher, A. Teuner and B. Hosticka: An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback. IEEE Trans. Image Process. 7 (1998) 53-61.
-
(1998)
IEEE Trans. Image Process.
, vol.7
, pp. 53-61
-
-
Picher, O.1
Teuner, A.2
Hosticka, B.3
-
18
-
-
84949993085
-
Image segmentation by flexible models based on robust regularized networks
-
M. Rivera and J.C. Gee:Image segmentation by flexible models based on robust regularized networks. ECCV, III (2002) 621-634.
-
(2002)
ECCV
, vol.3
, pp. 621-634
-
-
Rivera, M.1
Gee, J.C.2
-
19
-
-
33646593071
-
Two-level MRF models for image restoration and segmentation
-
M. Rivera and J.C. Gee, "Two-level MRF models for image restoration and segmentation," BMVC, 2 (2004) 809-818.
-
(2004)
BMVC
, vol.2
, pp. 809-818
-
-
Rivera, M.1
Gee, J.C.2
-
20
-
-
0035388547
-
Expectation-maximization algorithms for image processing using multiscale methods and mean field theory, with applications to laser radar range profiling and segmentation
-
Tsai, J Zhang and A Willsky. Expectation-Maximization Algorithms for Image Processing Using Multiscale Methods and Mean Field Theory, with Applications to Laser Radar Range Profiling and Segmentation. Opt. Engineering, 40, 7, (2001) 1287-1301.
-
(2001)
Opt. Engineering
, vol.40
, Issue.7
, pp. 1287-1301
-
-
Tsai1
Zhang, J.2
Willsky, A.3
-
21
-
-
0034857150
-
Image segmentation by data driven Markov chain Monte Carlo
-
Z. Tu, S.C. Zhu and H.Y Shum: Image Segmentation by Data Driven Markov Chain Monte Carlo. ICCV (2001) 131-138.
-
(2001)
ICCV
, pp. 131-138
-
-
Tu, Z.1
Zhu, S.C.2
Shum, H.Y.3
-
22
-
-
0029706940
-
A unified mixture framework for motion segmentation: Incorporating spatial coherence and estimating the number of models
-
Y. Weiss and E.H. Adelson: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. CVPR (1996) 321-326.
-
(1996)
CVPR
, pp. 321-326
-
-
Weiss, Y.1
Adelson, E.H.2
-
23
-
-
0027697605
-
An optimal graph theoretical approach to data clustering: Theory and its applications to image segmentation
-
Z. Wu and R. Leaby: An optimal graph theoretical approach to data clustering: Theory and its applications to image segmentation. IEEE-PAMI, 11 (1993) 1101-1113.
-
(1993)
IEEE-PAMI
, vol.11
, pp. 1101-1113
-
-
Wu, Z.1
Leaby, R.2
-
24
-
-
0026938712
-
The mean field theory in em procedures for Markov random fields
-
J. Zhang: The mean field theory in EM procedures for Markov random fields. IEEE Trans. Signal Processing, 40 (1992) 2570-2583.
-
(1992)
IEEE Trans. Signal Processing
, vol.40
, pp. 2570-2583
-
-
Zhang, J.1
|