메뉴 건너뛰기




Volumn 51, Issue 3-4, 2006, Pages 527-536

Determining the number of real roots of polynomials through neural networks

Author keywords

Neural networks; Number of zeros; Roots of polynomials

Indexed keywords

DIFFERENTIAL EQUATIONS; NEURAL NETWORKS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 33646592519     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2005.07.012     Document Type: Article
Times cited : (12)

References (25)
  • 1
    • 3042584634 scopus 로고    scopus 로고
    • A neural root finder of polynomials based on root moments
    • Huang D.S., Ip H.H.S., and Chi Z. A neural root finder of polynomials based on root moments. Neural Computation 16 8 (2004) 1721-1762
    • (2004) Neural Computation , vol.16 , Issue.8 , pp. 1721-1762
    • Huang, D.S.1    Ip, H.H.S.2    Chi, Z.3
  • 3
    • 0031990532 scopus 로고    scopus 로고
    • Constrained learning in neural networks: Application to stable factorization of 2-D polynomials
    • Perantonis S.J., Ampazis N., Varoufakis S., and Antoniou G. Constrained learning in neural networks: Application to stable factorization of 2-D polynomials. Neural Processing Letters 7 (1998) 5-14
    • (1998) Neural Processing Letters , vol.7 , pp. 5-14
    • Perantonis, S.J.1    Ampazis, N.2    Varoufakis, S.3    Antoniou, G.4
  • 4
    • 2442503670 scopus 로고    scopus 로고
    • A constructive approach for finding arbitrary roots of polynomials by neural networks
    • Huang D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Transactions on Neural Networks 15 2 (2004) 477-491
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.2 , pp. 477-491
    • Huang, D.S.1
  • 5
    • 0029403658 scopus 로고
    • An efficient constrained learning algorithm for feedforward networks
    • Karras D.A., and Perantonis S.J. An efficient constrained learning algorithm for feedforward networks. IEEE Transactions on Neural Networks 6 (1995) 1420-1434
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 1420-1434
    • Karras, D.A.1    Perantonis, S.J.2
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan M.T., and Menhaj M. Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Network 5 6 (1994) 989-993
    • (1994) IEEE Transactions on Neural Network , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 12
    • 0031028741 scopus 로고    scopus 로고
    • Effective backpropagation training with variable stepsize
    • Magoulas G.D., Vrahatis M.N., and Androulakis G.S. Effective backpropagation training with variable stepsize. Neural Networks 10 1 (1997) 69-82
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 69-82
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 13
    • 0033209687 scopus 로고    scopus 로고
    • Increasing the convergence rate of the error backpropagation algorithm by learning rate adaptation methods
    • Magoulas G.D., Vrahatis M.N., and Androulakis G.S. Increasing the convergence rate of the error backpropagation algorithm by learning rate adaptation methods. Neural Computation 11 7 (1999) 1769-1796
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 15
  • 18
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller M. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1993) 525-533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møller, M.1
  • 19
    • 0024861871 scopus 로고
    • Approximations by superpositions of sigmoidal functions
    • Cybenko G. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 2 (1989) 303-314
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 21
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • White H. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3 (1990) 535-549
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 22
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the mlp model in neural networks
    • Pinkus A. Approximation theory of the mlp model in neural networks. Acta Numerica (1999) 143-195
    • (1999) Acta Numerica , pp. 143-195
    • Pinkus, A.1
  • 24
    • 0036289713 scopus 로고    scopus 로고
    • On the complexity of isolating real roots and computing with certainty the topological degree
    • Mourrain B., Vrahatis M.N., and Yakoubsohn J.C. On the complexity of isolating real roots and computing with certainty the topological degree. Journal of Complexity 18 2 (2002) 612-640
    • (2002) Journal of Complexity , vol.18 , Issue.2 , pp. 612-640
    • Mourrain, B.1    Vrahatis, M.N.2    Yakoubsohn, J.C.3
  • 25
    • 21444455822 scopus 로고    scopus 로고
    • Numerical computation of polynomial zeros by means of Aberth's method
    • Bini D. Numerical computation of polynomial zeros by means of Aberth's method. Numerical Algorithms 13 (1996) 179-200
    • (1996) Numerical Algorithms , vol.13 , pp. 179-200
    • Bini, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.