메뉴 건너뛰기




Volumn 37, Issue 3, 2006, Pages 752-776

Immediate regularization after blow-up

Author keywords

Blow up; Nonlinear heat equation; Regularity

Indexed keywords

BLOW UP; NONLINEAR HEAT EQUATION; REGULARITY;

EID: 33646551765     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/040613299     Document Type: Article
Times cited : (32)

References (19)
  • 1
    • 0001590177 scopus 로고
    • max for the solution of a semilinear heat equation
    • max for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), pp. 142-174.
    • (1987) J. Funct. Anal. , vol.71 , pp. 142-174
    • Baras, P.1    Cohen, L.2
  • 2
    • 84969732524 scopus 로고    scopus 로고
    • Asymptotic periodicity of positive solutions of reaction-diffusion quations on a ball
    • X.-Y. CHEN AND P. POLÁČIK, Asymptotic periodicity of positive solutions of reaction-diffusion quations on a ball, J. Reine Angew. Math., 472 (1996), pp. 17-51.
    • (1996) J. Reine Angew. Math. , vol.472 , pp. 17-51
    • Chen, X.-Y.1    Poláčik, P.2
  • 3
    • 0042237449 scopus 로고    scopus 로고
    • Global solutions of a semilinear parabolic equation
    • M. FILA AND P. POLÁČIK, Global solutions of a semilinear parabolic equation, Adv. Differential Equations, 4 (1999), pp. 163-196.
    • (1999) Adv. Differential Equations , vol.4 , pp. 163-196
    • Fila, M.1    Poláčik, P.2
  • 4
    • 0031541195 scopus 로고    scopus 로고
    • Continuation of blow-up solutions of nonlinear heat equations in several space dimensions
    • V. GALAKTIONOV AND J.L. VÁZQUEZ, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), pp. 1-67.
    • (1997) Comm. Pure Appl. Math. , vol.50 , pp. 1-67
    • Galaktionov, V.1    Vázquez, J.L.2
  • 5
    • 0000247179 scopus 로고
    • Some problems in the theory of quasilinear equations
    • I.M. GELFAND, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29 (1963), pp. 295-381.
    • (1963) Amer. Math. Soc. Transl. , vol.29 , pp. 295-381
    • Gelfand, I.M.1
  • 6
    • 0000332576 scopus 로고
    • Characterizing blowup using similarity variables
    • Y. GIGA AND R.V. KOHN, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), pp. 1-40.
    • (1987) Indiana Univ. Math. J. , vol.36 , pp. 1-40
    • Giga, Y.1    Kohn, R.V.2
  • 7
    • 0015557517 scopus 로고
    • Quasilinear Dirichlet problems driven by positive sources
    • D.D. JOSEPH AND T.S. LUNDGREN, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal., 49 (1973), pp. 241-269.
    • (1973) Arch. Ration. Mech. Anal. , vol.49 , pp. 241-269
    • Joseph, D.D.1    Lundgren, T.S.2
  • 8
    • 84980080195 scopus 로고
    • On the growth of solutions of quasi-linear parabolic equations
    • S. KAPLAN, On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., 16 (1963), pp. 305-330.
    • (1963) Commun. Pure Appl. Math. , vol.16 , pp. 305-330
    • Kaplan, S.1
  • 9
    • 0012856953 scopus 로고
    • Global, unbounded solutions to a parabolic equation
    • A.A. LACEY AND D.E. TZANETIS, Global, unbounded solutions to a parabolic equation, J. Differential Equations, 101 (1993), pp. 80-102.
    • (1993) J. Differential Equations , vol.101 , pp. 80-102
    • Lacey, A.A.1    Tzanetis, D.E.2
  • 10
    • 7044224827 scopus 로고    scopus 로고
    • On non-existence of type II blow-up for a supercritical nonlinear heat equation
    • H. MATANO AND F. MERLE, On non-existence of type II blow-up for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., 57 (2004), pp. 1494-1541.
    • (2004) Commun. Pure Appl. Math. , vol.57 , pp. 1494-1541
    • Matano, H.1    Merle, F.2
  • 11
    • 0036488717 scopus 로고    scopus 로고
    • On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity
    • N. MIZOGUCHI, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity, Math. Z., 239 (2002), pp. 215-219.
    • (2002) Math. Z. , vol.239 , pp. 215-219
    • Mizoguchi, N.1
  • 12
    • 12444285887 scopus 로고    scopus 로고
    • Various behaviors of solutions for a semilinear heat equation after blowup
    • N. MIZOGUCHI, Various behaviors of solutions for a semilinear heat equation after blowup, J. Funct. Anal., 220 (2005), pp. 214-227.
    • (2005) J. Funct. Anal. , vol.220 , pp. 214-227
    • Mizoguchi, N.1
  • 13
    • 15244338623 scopus 로고    scopus 로고
    • Multiple blow-up of solutions for a semilinear heat equation
    • N. MIZOGUCHI, Multiple blow-up of solutions for a semilinear heat equation, Math. Ann., 331 (2005), pp. 461-473.
    • (2005) Math. Ann. , vol.331 , pp. 461-473
    • Mizoguchi, N.1
  • 16
    • 0002842122 scopus 로고
    • On the asymptotic, behavior of solutions of certain quasilinear parabolic equations
    • W.-M. NI, P.E. SACKS, AND J. TAVANTZIS, On the asymptotic, behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations, 54 (1984), pp. 97-120.
    • (1984) J. Differential Equations , vol.54 , pp. 97-120
    • Ni, W.-M.1    Sacks, P.E.2    Tavantzis, J.3
  • 17
    • 33646569771 scopus 로고    scopus 로고
    • private communication
    • M. PIERRE, private communication.
    • Pierre, M.1
  • 18
    • 0347354923 scopus 로고    scopus 로고
    • Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state
    • PH. SOUPLET AND F.B. WEISSLER, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 20 (2003), pp. 213-235.
    • (2003) Ann. Inst. H. Poincaré, Anal. Non Linéaire , vol.20 , pp. 213-235
    • Souplet, P.H.1    Weissler, F.B.2
  • 19
    • 0005508894 scopus 로고    scopus 로고
    • Domain of existence and blowup for the exponential reaction diffusion equation
    • J.L. VÁZQUEZ, Domain of existence and blowup for the exponential reaction diffusion equation, Indiana Univ. Math. J., 48 (1999), pp. 677-709.
    • (1999) Indiana Univ. Math. J. , vol.48 , pp. 677-709
    • Vázquez, J.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.