메뉴 건너뛰기




Volumn 3739 LNCS, Issue , 2005, Pages 333-344

Intrusion detection of DoS/DDoS and probing attacks for web services

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER NETWORKS; DISTRIBUTED COMPUTER SYSTEMS; EVALUATION; FEATURE EXTRACTION; INFORMATION MANAGEMENT; TELECOMMUNICATION TRAFFIC;

EID: 33646523125     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11563952_30     Document Type: Conference Paper
Times cited : (10)

References (14)
  • 1
    • 85084161486 scopus 로고    scopus 로고
    • Inferring internet denial-of-service activity
    • Washington, D.C.
    • Moore D., Voelker G., and Savage S.,: Inferring Internet Denial-of-Service Activity, in Usenix Security Symposium, Washington, D.C., (2001) 401-414
    • (2001) Usenix Security Symposium , pp. 401-414
    • Moore, D.1    Voelker, G.2    Savage, S.3
  • 4
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • Kluwer
    • E. Eskin, A. Arnold, M. Prerau: A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. Applications of Data Mining in Computer Security, Kluwer, 2002
    • (2002) Applications of Data Mining in Computer Security
    • Eskin, E.1    Arnold, A.2    Prerau, M.3
  • 5
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Andrew H. Sung, Srinivas Mukkamala: Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. Proceedings of the 2003 Symposium on Applications and the Internet, (2003) 119-123
    • (2003) Proceedings of the 2003 Symposium on Applications and the Internet , pp. 119-123
    • Sung, A.H.1    Mukkamala, S.2
  • 6
    • 0037142572 scopus 로고    scopus 로고
    • Anomaly intrusion detection method based on HMM
    • Y. Qiao, X. W. Xin, Y. Bin and S. Ge: Anomaly Intrusion Detection Method Based on HMM, Electronics Letters, 38(13), (2002) 663-664
    • (2002) Electronics Letters , vol.38 , Issue.13 , pp. 663-664
    • Qiao, Y.1    Xin, X.W.2    Bin, Y.3    Ge, S.4
  • 7
    • 32244444272 scopus 로고    scopus 로고
    • An adaptive intrusion detection system using neural network
    • UNESP, Brazil
    • J. M. Bonifaco, E. S. Moreira: An Adaptive Intrusion Detection System Using Neural Network, Research Report, UNESP, Brazil, 1997
    • (1997) Research Report
    • Bonifaco, J.M.1    Moreira, E.S.2
  • 8
    • 33646517851 scopus 로고    scopus 로고
    • http://www.snort.org
  • 10
    • 0028607656 scopus 로고
    • A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers
    • Ueda, N. and Nakano, R.: A New Competitive Learning Approach Based on an Equidistortion Principle for Designing Optimal Vector Quantizers. IEEE Transactions on Neural Networks, 7(8), (1994) 1211-1227
    • (1994) IEEE Transactions on Neural Networks , vol.7 , Issue.8 , pp. 1211-1227
    • Ueda, N.1    Nakano, R.2
  • 13
    • 33646511667 scopus 로고    scopus 로고
    • http://www.ll.mit.edu/IST/ideval/index.html
  • 14
    • 0034301517 scopus 로고    scopus 로고
    • The 1999 DARPA off-line intrusion detection evaluation
    • Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das.: The 1999 DARPA Off-Line Intrusion Detection Evaluation, Computer Networks, 34 (4), (2000) 579-595
    • (2000) Computer Networks , vol.34 , Issue.4 , pp. 579-595
    • Lippmann, R.1    Haines, J.W.2    Fried, D.J.3    Korba, J.4    Das, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.