메뉴 건너뛰기




Volumn 194, Issue 2, 2006, Pages 357-367

Bifurcation diagrams of population models with nonlinear, diffusion

Author keywords

Global bifurcation; Nonlinear diffusion; Semilinear elliptic equation

Indexed keywords

BIFURCATION (MATHEMATICS); DIFFUSION; FUNCTIONS; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 33646522993     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2005.08.004     Document Type: Article
Times cited : (17)

References (22)
  • 1
    • 0000426851 scopus 로고
    • Diffusive logistic equations with indefinite weights: population models in disrupted environments. II
    • Cantrell R.S., and Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. II. SIAM J. Math. Anal. 22 4 (1991) 1043-1064
    • (1991) SIAM J. Math. Anal. , vol.22 , Issue.4 , pp. 1043-1064
    • Cantrell, R.S.1    Cosner, C.2
  • 2
    • 0036974777 scopus 로고    scopus 로고
    • Conditional persistence in logistic models via nonlinear diffusion
    • Cantrell R.S., and Cosner C. Conditional persistence in logistic models via nonlinear diffusion. Proc. Roy. Soc. Edinburgh Sect. A 132 2 (2002) 267-281
    • (2002) Proc. Roy. Soc. Edinburgh Sect. A , vol.132 , Issue.2 , pp. 267-281
    • Cantrell, R.S.1    Cosner, C.2
  • 4
    • 33646497587 scopus 로고    scopus 로고
    • J.I. Diaz, Nonlinear partial differential equations and free boundaries, Vol. I. Elliptic Equations, Research Notes in Mathematics, vol. 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.
  • 5
    • 0009397249 scopus 로고
    • The number of solutions of a nonlinear two point boundary value problem
    • Laetsch T. The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20 (1970/1971) 1-13
    • (1970) Indiana Univ. Math. J. , vol.20 , pp. 1-13
    • Laetsch, T.1
  • 6
    • 33646506317 scopus 로고    scopus 로고
    • Positive solutions to a system of differential equations modeling a competitive interacting system with nonlogistic growth rates
    • Logan R. Positive solutions to a system of differential equations modeling a competitive interacting system with nonlogistic growth rates. Differential Integral Equations 10 5 (1997) 929-945
    • (1997) Differential Integral Equations , vol.10 , Issue.5 , pp. 929-945
    • Logan, R.1
  • 7
    • 0021605832 scopus 로고
    • Bifurcation studies in reaction-diffusion. II
    • Manoranjan V.S. Bifurcation studies in reaction-diffusion. II. J. Comput. Appl. Math. 11 3 (1984) 307-314
    • (1984) J. Comput. Appl. Math. , vol.11 , Issue.3 , pp. 307-314
    • Manoranjan, V.S.1
  • 9
    • 33646532798 scopus 로고    scopus 로고
    • J.D. Murray, Mathematical biology, third ed., I. An introduction, Interdisciplinary Applied Mathematics, vol. 17, Springer, New York, 2002.
  • 10
    • 33646510009 scopus 로고    scopus 로고
    • A. Okubo, S. Levin, Diffusion and ecological problems: modern perspectives, second ed., Interdisciplinary Applied Mathematics, vol. 14, Springer, New York, 2001.
  • 11
    • 0001807893 scopus 로고
    • ″ + g ( x ) = 0
    • (in French)
    • ″ + g ( x ) = 0. Ann. Polon. Math. 10 (1961) 49-72 (in French)
    • (1961) Ann. Polon. Math. , vol.10 , pp. 49-72
    • Opial, Z.1
  • 12
    • 0001602653 scopus 로고    scopus 로고
    • Exact multiplicity of positive solutions for a class of semilinear problem
    • Ouyang T., and Shi J. Exact multiplicity of positive solutions for a class of semilinear problem. J. Differential Equations 146 1 (1998) 121-156
    • (1998) J. Differential Equations , vol.146 , Issue.1 , pp. 121-156
    • Ouyang, T.1    Shi, J.2
  • 13
    • 33646508465 scopus 로고    scopus 로고
    • R. Schaaf, Global solution branches of two-point boundary value problems, Lecture Notes in Mathematics, vol. 1458, Springer, Berlin, 1990.
  • 14
    • 0000103723 scopus 로고    scopus 로고
    • Persistence and bifurcation of degenerate solutions
    • Shi J. Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169 2 (1999) 494-531
    • (1999) J. Funct. Anal. , vol.169 , Issue.2 , pp. 494-531
    • Shi, J.1
  • 15
    • 0001403672 scopus 로고    scopus 로고
    • Blow-up points of solution curves for a semilinear problem
    • Shi J. Blow-up points of solution curves for a semilinear problem. Topo. Meth. of Nonlinear Anal. 15 2 (2000) 251-266
    • (2000) Topo. Meth. of Nonlinear Anal. , vol.15 , Issue.2 , pp. 251-266
    • Shi, J.1
  • 16
    • 0035613628 scopus 로고    scopus 로고
    • Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity
    • Shi J., and Shivaji R. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete and Continuous Dynamical Systems 7 3 (2001) 559-571
    • (2001) Discrete and Continuous Dynamical Systems , vol.7 , Issue.3 , pp. 559-571
    • Shi, J.1    Shivaji, R.2
  • 17
    • 33646519141 scopus 로고    scopus 로고
    • J. Shi, R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, 2004, preprint.
  • 18
    • 0000093987 scopus 로고
    • Global bifurcation of steady-state solutions
    • Smoller J., and Wasserman A. Global bifurcation of steady-state solutions. J. Differential Equations 39 2 (1981) 269-290
    • (1981) J. Differential Equations , vol.39 , Issue.2 , pp. 269-290
    • Smoller, J.1    Wasserman, A.2
  • 19
    • 0024567969 scopus 로고
    • Population consequences of aggregative movement
    • Turchin P. Population consequences of aggregative movement. J. Animal Ecology 58 (1989) 75-100
    • (1989) J. Animal Ecology , vol.58 , pp. 75-100
    • Turchin, P.1
  • 21
    • 84972500041 scopus 로고
    • On the time map of a nonlinear two point boundary value problem
    • Wang S.-H. On the time map of a nonlinear two point boundary value problem. Differential Integral Equations 7 1 (1994) 49-55
    • (1994) Differential Integral Equations , vol.7 , Issue.1 , pp. 49-55
    • Wang, S.-H.1
  • 22
    • 1442356492 scopus 로고    scopus 로고
    • A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities
    • Wang S.-H., and Yeh T.-S. A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities. J. Math. Anal. Appl. 291 1 (2004) 128-153
    • (2004) J. Math. Anal. Appl. , vol.291 , Issue.1 , pp. 128-153
    • Wang, S.-H.1    Yeh, T.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.