메뉴 건너뛰기




Volumn 321, Issue 2, 2006, Pages 828-850

Nonlinear models of suspension bridges

Author keywords

Brouwer Fixed Point Theorem; Implicit Function Theorem; Principle of minimum potential energy; Suspension bridges

Indexed keywords


EID: 33646513489     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2005.08.080     Document Type: Article
Times cited : (15)

References (11)
  • 1
    • 0032095111 scopus 로고    scopus 로고
    • Mathematical analysis of dynamic models of suspension bridges
    • Ahmed N.U., and Harbi H. Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 58 (1998) 853-874
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 853-874
    • Ahmed, N.U.1    Harbi, H.2
  • 3
    • 0026386159 scopus 로고
    • The structures of the solution set for periodic oscillations in a suspension bridge model
    • Choy Y.S., Jen K.C., and McKenna P.J. The structures of the solution set for periodic oscillations in a suspension bridge model. IMA J. Appl. Math. 47 (1991) 283-306
    • (1991) IMA J. Appl. Math. , vol.47 , pp. 283-306
    • Choy, Y.S.1    Jen, K.C.2    McKenna, P.J.3
  • 4
    • 0002279946 scopus 로고    scopus 로고
    • Coupled string-beam equations as a model of suspension bridges
    • Drábek P., Leinfelder H., and Tajčová G. Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44 (1999) 97-142
    • (1999) Appl. Math. , vol.44 , pp. 97-142
    • Drábek, P.1    Leinfelder, H.2    Tajčová, G.3
  • 5
    • 0000139120 scopus 로고
    • Periodic oscillations for a nonlinear suspension bridge model
    • Fonda A., Schneider Y., and Zanolin F. Periodic oscillations for a nonlinear suspension bridge model. J. Comput. Appl. Math. 52 (1994) 113-140
    • (1994) J. Comput. Appl. Math. , vol.52 , pp. 113-140
    • Fonda, A.1    Schneider, Y.2    Zanolin, F.3
  • 6
    • 0000009637 scopus 로고
    • Existence and stability of large-scale nonlinear oscillations in suspension bridges
    • Glover J., Lazer A.C., and McKenna P.J. Existence and stability of large-scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989) 171-200
    • (1989) Z. Angew. Math. Phys. , vol.40 , pp. 171-200
    • Glover, J.1    Lazer, A.C.2    McKenna, P.J.3
  • 7
    • 0347604011 scopus 로고    scopus 로고
    • Initial-boundary value problem for the nonlinear string-beam system
    • Holubová G., and Matas A. Initial-boundary value problem for the nonlinear string-beam system. J. Math. Anal. Appl. 288 (2003) 784-802
    • (2003) J. Math. Anal. Appl. , vol.288 , pp. 784-802
    • Holubová, G.1    Matas, A.2
  • 8
    • 0025546181 scopus 로고
    • Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis
    • Lazer A.C., and McKenna P.J. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32 (1989) 537-578
    • (1989) SIAM Rev. , vol.32 , pp. 537-578
    • Lazer, A.C.1    McKenna, P.J.2
  • 9
    • 0023169787 scopus 로고
    • Nonlinear oscillations in a suspension bridge
    • Lazer A.C., and Walter W. Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98 (1987) 167-177
    • (1987) Arch. Ration. Mech. Anal. , vol.98 , pp. 167-177
    • Lazer, A.C.1    Walter, W.2
  • 10
    • 0036470577 scopus 로고    scopus 로고
    • Oscillations in cable stayed bridges: Existence, uniqueness, homogenization of cable systems
    • Malík J. Oscillations in cable stayed bridges: Existence, uniqueness, homogenization of cable systems. J. Math. Anal. Appl. 226 (2002) 100-126
    • (2002) J. Math. Anal. Appl. , vol.226 , pp. 100-126
    • Malík, J.1
  • 11
    • 84867938129 scopus 로고    scopus 로고
    • Mathematical modelling of cable stayed bridges: Existence, uniqueness, homogenization of cable systems
    • Malík J. Mathematical modelling of cable stayed bridges: Existence, uniqueness, homogenization of cable systems. Appl. Math. 49 (2004) 1-38
    • (2004) Appl. Math. , vol.49 , pp. 1-38
    • Malík, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.