-
1
-
-
0032095111
-
Mathematical analysis of dynamic models of suspension bridges
-
Ahmed N.U., and Harbi H. Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 58 (1998) 853-874
-
(1998)
SIAM J. Appl. Math.
, vol.58
, pp. 853-874
-
-
Ahmed, N.U.1
Harbi, H.2
-
2
-
-
0034258761
-
Time-periodic oscillations in suspension bridges: Existence of unique solution
-
Berkovits J., Drábek P., Leinfelder H., Mustonen V., and Tajčová G. Time-periodic oscillations in suspension bridges: Existence of unique solution. Nonlinear Anal. 1 (2000) 345-362
-
(2000)
Nonlinear Anal.
, vol.1
, pp. 345-362
-
-
Berkovits, J.1
Drábek, P.2
Leinfelder, H.3
Mustonen, V.4
Tajčová, G.5
-
3
-
-
0026386159
-
The structures of the solution set for periodic oscillations in a suspension bridge model
-
Choy Y.S., Jen K.C., and McKenna P.J. The structures of the solution set for periodic oscillations in a suspension bridge model. IMA J. Appl. Math. 47 (1991) 283-306
-
(1991)
IMA J. Appl. Math.
, vol.47
, pp. 283-306
-
-
Choy, Y.S.1
Jen, K.C.2
McKenna, P.J.3
-
4
-
-
0002279946
-
Coupled string-beam equations as a model of suspension bridges
-
Drábek P., Leinfelder H., and Tajčová G. Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44 (1999) 97-142
-
(1999)
Appl. Math.
, vol.44
, pp. 97-142
-
-
Drábek, P.1
Leinfelder, H.2
Tajčová, G.3
-
5
-
-
0000139120
-
Periodic oscillations for a nonlinear suspension bridge model
-
Fonda A., Schneider Y., and Zanolin F. Periodic oscillations for a nonlinear suspension bridge model. J. Comput. Appl. Math. 52 (1994) 113-140
-
(1994)
J. Comput. Appl. Math.
, vol.52
, pp. 113-140
-
-
Fonda, A.1
Schneider, Y.2
Zanolin, F.3
-
6
-
-
0000009637
-
Existence and stability of large-scale nonlinear oscillations in suspension bridges
-
Glover J., Lazer A.C., and McKenna P.J. Existence and stability of large-scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989) 171-200
-
(1989)
Z. Angew. Math. Phys.
, vol.40
, pp. 171-200
-
-
Glover, J.1
Lazer, A.C.2
McKenna, P.J.3
-
7
-
-
0347604011
-
Initial-boundary value problem for the nonlinear string-beam system
-
Holubová G., and Matas A. Initial-boundary value problem for the nonlinear string-beam system. J. Math. Anal. Appl. 288 (2003) 784-802
-
(2003)
J. Math. Anal. Appl.
, vol.288
, pp. 784-802
-
-
Holubová, G.1
Matas, A.2
-
8
-
-
0025546181
-
Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis
-
Lazer A.C., and McKenna P.J. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32 (1989) 537-578
-
(1989)
SIAM Rev.
, vol.32
, pp. 537-578
-
-
Lazer, A.C.1
McKenna, P.J.2
-
9
-
-
0023169787
-
Nonlinear oscillations in a suspension bridge
-
Lazer A.C., and Walter W. Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98 (1987) 167-177
-
(1987)
Arch. Ration. Mech. Anal.
, vol.98
, pp. 167-177
-
-
Lazer, A.C.1
Walter, W.2
-
10
-
-
0036470577
-
Oscillations in cable stayed bridges: Existence, uniqueness, homogenization of cable systems
-
Malík J. Oscillations in cable stayed bridges: Existence, uniqueness, homogenization of cable systems. J. Math. Anal. Appl. 226 (2002) 100-126
-
(2002)
J. Math. Anal. Appl.
, vol.226
, pp. 100-126
-
-
Malík, J.1
-
11
-
-
84867938129
-
Mathematical modelling of cable stayed bridges: Existence, uniqueness, homogenization of cable systems
-
Malík J. Mathematical modelling of cable stayed bridges: Existence, uniqueness, homogenization of cable systems. Appl. Math. 49 (2004) 1-38
-
(2004)
Appl. Math.
, vol.49
, pp. 1-38
-
-
Malík, J.1
|