메뉴 건너뛰기




Volumn 3739 LNCS, Issue , 2005, Pages 785-790

An optimized K-means algorithm of reducing cluster intra-dissimilarity for document clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; OBJECT ORIENTED PROGRAMMING; SELF ORGANIZING MAPS;

EID: 33646509390     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11563952_81     Document Type: Conference Paper
Times cited : (2)

References (13)
  • 2
    • 15544375993 scopus 로고    scopus 로고
    • An immune network approach for web document clustering
    • 11
    • X.Hang and H.Dai. An Immune Network Approach for Web Document Clustering. WI2004, 2004.11. 278-284
    • (2004) WI2004 , pp. 278-284
    • Hang, X.1    Dai, H.2
  • 5
    • 2142808782 scopus 로고    scopus 로고
    • Hybrid neural document clustering using guided self-organizing and WordNet
    • C.Hung, S.Wermter, and P.Smith. Hybrid Neural Document Clustering Using Guided Self-Organizing and WordNet. IEEE Intelligent System, 19(2), 2004. 68-77
    • (2004) IEEE Intelligent System , vol.19 , Issue.2 , pp. 68-77
    • Hung, C.1    Wermter, S.2    Smith, P.3
  • 6
    • 33646501631 scopus 로고    scopus 로고
    • An efficient two-level SOMART document clustering through dimensionality reduction
    • 11
    • M.Hussin, M.Kamel and M.Nagi. An Efficient Two-Level SOMART Document Clustering Through Dimensionality Reduction. ICONIP2004,2004.11. 158-165
    • (2004) ICONIP2004 , pp. 158-165
    • Hussin, M.1    Kamel, M.2    Nagi, M.3
  • 7
    • 0033650819 scopus 로고    scopus 로고
    • Stemming and its effects on TFIDF ranking
    • 7
    • M.Kantrowitz, B.Mohit, W.Mittal. Stemming and its Effects on TFIDF Ranking. SIGIR2000, 2000.7. 357-359
    • (2000) SIGIR2000 , pp. 357-359
    • Kantrowitz, M.1    Mohit, B.2    Mittal, W.3
  • 8
    • 24344500272 scopus 로고    scopus 로고
    • ESPClust: An effective skew prevention method for model-based document clustering
    • 2
    • X.Li, G.Yu, D.Wang and Y.Bao. ESPClust: An Effective Skew Prevention Method for Model-Based Document Clustering. CICLing2005. 2005.2. 735-745
    • (2005) CICLing2005 , pp. 735-745
    • Li, X.1    Yu, G.2    Wang, D.3    Bao, Y.4
  • 9
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in k-means clustering
    • D.Modha, W.Spangler. Feature Weighting in k-Means Clustering. Machine Learning, 2003, 52(3). 217-237
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.1    Spangler, W.2
  • 10
    • 18744382497 scopus 로고    scopus 로고
    • Document clustering based on cluster validation
    • 11
    • Z.Niu, D.Ji, and C.Tan. Document Clustering Based on Cluster Validation. CIKM2004, 2004.11.501-506
    • (2004) CIKM2004 , pp. 501-506
    • Niu, Z.1    Ji, D.2    Tan, C.3
  • 11
    • 33646537094 scopus 로고    scopus 로고
    • Document clustering using the 1 + 1 dimensional self-organizing map
    • 8
    • B.Russel, H.Yin, and N.Allinson. Document Clustering Using the 1 + 1 Dimensional Self-Organizing Map. IDEAL2002, 2002.8. 154-160
    • (2002) IDEAL2002 , pp. 154-160
    • Russel, B.1    Yin, H.2    Allinson, N.3
  • 13
    • 9744238099 scopus 로고    scopus 로고
    • A maximal frequent itemset approach for web document clustering
    • 11
    • L.Zhuang and H.Dai. A Maximal Frequent Itemset Approach for Web Document Clustering. CIT2004, 2004.11. 970-977
    • (2004) CIT2004 , pp. 970-977
    • Zhuang, L.1    Dai, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.