메뉴 건너뛰기




Volumn 158, Issue 1, 2006, Pages 289-306

Algebraic Information Theory For Binary Channels

Author keywords

covert channel; domain theory; information theory; monoid

Indexed keywords

ALGEBRA; BINARY SEQUENCES; COMPUTER SCIENCE; PROBLEM SOLVING;

EID: 33646483492     PISSN: 15710661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.entcs.2006.04.015     Document Type: Article
Times cited : (14)

References (5)
  • 1
    • 0001847686 scopus 로고
    • Domain theory
    • Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds), Oxford University Press
    • Abramsky S., and Jung A. Domain theory. In: Abramsky S., Gabbay D.M., and Maibaum T.S.E. (Eds). Handbook of Logic in Computer Science, vol. III (1994), Oxford University Press
    • (1994) Handbook of Logic in Computer Science, vol. III
    • Abramsky, S.1    Jung, A.2
  • 3
    • 30844433278 scopus 로고    scopus 로고
    • Entropy as a fixed point
    • ICALP 2004
    • Martin K. Entropy as a fixed point. ICALP 2004. Theoretical Computer Science 350 2-3 (2003) 292-324
    • (2003) Theoretical Computer Science , vol.350 , Issue.2-3 , pp. 292-324
    • Martin, K.1
  • 4
    • 33646467146 scopus 로고    scopus 로고
    • K. Martin and I.S. Moskowitz. Noisy timing channels with binary inputs and outputs. Information Hiding, Lecture Notes in Computer Science, Springer-Verlag, 2006, to appear
  • 5
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon C.E. A mathematical theory of communication. Bell Systems Technical Journal 27 (1948) 379-423 623-656
    • (1948) Bell Systems Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.