메뉴 건너뛰기




Volumn 152, Issue , 2006, Pages 285-312

Complexes of graph homomorphisms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33646388261     PISSN: 00212172     EISSN: 15658511     Source Type: Journal    
DOI: 10.1007/BF02771988     Document Type: Article
Times cited : (99)

References (28)
  • 7
    • 0000956933 scopus 로고
    • Topological methods
    • (R. Graham, M. Grötschel and L. Lovász, eds.), Elsevier, Amsterdam
    • A. Björner, Topological Methods, in Handbook of Combinatorics (R. Graham, M. Grötschel and L. Lovász, eds.), Elsevier, Amsterdam, 1995, pp. 1819-1872.
    • (1995) Handbook of Combinatorics , pp. 1819-1872
    • Björner, A.1
  • 8
    • 0007249061 scopus 로고    scopus 로고
    • Topology and geometry
    • Corrected third printing of the 1993 original, Springer-Verlag, New York
    • G. Bredon, Topology and Geometry, Corrected third printing of the 1993 original, Graduate Texts in Mathematics, 139, Springer-Verlag, New York, 1997.
    • (1997) Graduate Texts in Mathematics , vol.139
    • Bredon, G.1
  • 10
    • 33646409232 scopus 로고    scopus 로고
    • personal communication
    • P. Csorba, personal communication, 2003.
    • (2003)
    • Csorba, P.1
  • 11
    • 33646404275 scopus 로고    scopus 로고
    • personal communication
    • P. Csorba and F. Lutz, personal communication, 2004.
    • (2004)
    • Csorba, P.1    Lutz, F.2
  • 14
    • 0002910255 scopus 로고    scopus 로고
    • Morse theory for cell complexes
    • R. Forman, Morse theory for cell complexes, Advances in Mathematics 134 (1998), 90-145.
    • (1998) Advances in Mathematics , vol.134 , pp. 90-145
    • Forman, R.1
  • 18
    • 2442565980 scopus 로고    scopus 로고
    • Rational homology of spaces of complex monic polynomials with multiple roots
    • D. N. Kozlov, Rational homology of spaces of complex monic polynomials with multiple roots, Mathematika 49 (2002), 77-91.
    • (2002) Mathematika , vol.49 , pp. 77-91
    • Kozlov, D.N.1
  • 19
    • 84860706130 scopus 로고    scopus 로고
    • A simple proof for folds on both sides in complexes of graph homomorphisms
    • to appear. arXiv:math.CO/0408262
    • D. N. Kozlov, A simple proof for folds on both sides in complexes of graph homomorphisms, Proceedings of the American Mathematical Society, to appear. arXiv:math.CO/0408262
    • Proceedings of the American Mathematical Society
    • Kozlov, D.N.1
  • 21
    • 52949140243 scopus 로고    scopus 로고
    • Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes
    • Geometric Combinatorics, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ
    • D. N. Kozlov, Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes, in Geometric Combinatorics, IAS/Park City Mathematics Series 14, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2005.
    • (2005) IAS/Park City Mathematics Series , vol.14
    • Kozlov, D.N.1
  • 22
    • 34648860385 scopus 로고
    • Kneser's conjecture, chromatic number, and homotopy
    • L. Lovász, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory. Series A 25 (1978), 319-324.
    • (1978) Journal of Combinatorial Theory. Series A , vol.25 , pp. 319-324
    • Lovász, L.1
  • 23
    • 33646387117 scopus 로고    scopus 로고
    • personal communication
    • L. Lovász, personal communication, 2001.
    • (2001)
    • Lovász, L.1
  • 26
    • 0000790004 scopus 로고
    • Higher algebraic K-theory, I
    • Springer-Verlag, Berlin
    • D. Quillen, Higher algebraic K-theory, I, Lecture Notes in Mathematics 341, Springer-Verlag, Berlin, 1973, pp. 77-139.
    • (1973) Lecture Notes in Mathematics , vol.341 , pp. 77-139
    • Quillen, D.1
  • 28
    • 0003362191 scopus 로고
    • Transformation groups
    • Walter de Gruyter & Co., Berlin
    • T. tom Dieck, Transformation Groups, de Gruyter Studies in Mathematics, 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp.
    • (1987) De Gruyter Studies in Mathematics , vol.8
    • Dieck, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.