메뉴 건너뛰기




Volumn 320, Issue 2, 2006, Pages 916-927

The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings

Author keywords

Jordan von Neumann constant; Multivalued nonexpansive mapping; Normal structure; Regular asymptotically uniform sequence; Weakly convergent sequence coefficient

Indexed keywords


EID: 33646362519     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2005.07.063     Document Type: Article
Times cited : (32)

References (22)
  • 3
    • 0000504410 scopus 로고
    • Normal structure coefficients for Banach spaces
    • Bynum W.L. Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980) 427-436
    • (1980) Pacific J. Math. , vol.86 , pp. 427-436
    • Bynum, W.L.1
  • 4
    • 0001124066 scopus 로고
    • The von Neumann-Jordan constant for the Lebesgue space
    • Clarkson J.A. The von Neumann-Jordan constant for the Lebesgue space. Ann. of Math. 38 (1973) 114-115
    • (1973) Ann. of Math. , vol.38 , pp. 114-115
    • Clarkson, J.A.1
  • 5
    • 33646375259 scopus 로고    scopus 로고
    • S. Dhompongsa, A. Kaewcharoen, A. Kaewkhao, The Domínguez-Lorenzo condition and multivalued nonexpansive mappings, Nonlinear Anal., in press
  • 6
    • 33646369731 scopus 로고    scopus 로고
    • S. Dhompongsa, A. Kaewkhao, A note on properties that imply the weak fixed point property, Abstr. Appl. Anal., in press
  • 7
    • 0039336132 scopus 로고    scopus 로고
    • A geometrical coefficient implying the fixed point property and stability results
    • Domínguez Benavides T. A geometrical coefficient implying the fixed point property and stability results. Houston J. Math. 22 (1996) 835-849
    • (1996) Houston J. Math. , vol.22 , pp. 835-849
    • Domínguez Benavides, T.1
  • 8
    • 33646368208 scopus 로고    scopus 로고
    • T. Domínguez Benavides, B. Gavira, The Fixed Point Property for multivalued nonexpansive mappings and its preservance under renorming, preprint
  • 9
    • 1442282874 scopus 로고    scopus 로고
    • Fixed point theorems for multivalued nonexpansive mappings without uniform convexity
    • Domínguez Benavides T., and Lorenzo Ramirez P. Fixed point theorems for multivalued nonexpansive mappings without uniform convexity. Abstr. Appl. Anal. 2003 (2003) 375-386
    • (2003) Abstr. Appl. Anal. , vol.2003 , pp. 375-386
    • Domínguez Benavides, T.1    Lorenzo Ramirez, P.2
  • 11
    • 0002429823 scopus 로고
    • On two classes of Banach spaces with uniform normal structure
    • Gao J., and Lau K.S. On two classes of Banach spaces with uniform normal structure. Studia Math. 99 (1991) 41-56
    • (1991) Studia Math. , vol.99 , pp. 41-56
    • Gao, J.1    Lau, K.S.2
  • 12
    • 0000054048 scopus 로고
    • Stability and fixed point for nonexpansive mappings
    • Garcia-Falset J. Stability and fixed point for nonexpansive mappings. Houston J. Math. 20 (1994) 495-506
    • (1994) Houston J. Math. , vol.20 , pp. 495-506
    • Garcia-Falset, J.1
  • 13
    • 0039385127 scopus 로고
    • On a fixed point theorem for multivalued nonexpansive mappings
    • Goebel K. On a fixed point theorem for multivalued nonexpansive mappings. Ann. Univ. Mariae Curie-Skłodowska 29 (1975) 69-72
    • (1975) Ann. Univ. Mariae Curie-Skłodowska , vol.29 , pp. 69-72
    • Goebel, K.1
  • 15
    • 0342900189 scopus 로고
    • Remarks on asymptotic and Chebyshev centers
    • Kirk W.A., and Massa S. Remarks on asymptotic and Chebyshev centers. Houston J. Math. 16 (1990) 357-364
    • (1990) Houston J. Math. , vol.16 , pp. 357-364
    • Kirk, W.A.1    Massa, S.2
  • 16
    • 0342900187 scopus 로고
    • Compact asymptotic centers and fixed points of multivalued nonexpansive mappings
    • Kuczumow T., and Prus S. Compact asymptotic centers and fixed points of multivalued nonexpansive mappings. Houston J. Math. 16 (1990) 465-468
    • (1990) Houston J. Math. , vol.16 , pp. 465-468
    • Kuczumow, T.1    Prus, S.2
  • 17
    • 84968466492 scopus 로고
    • A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space
    • Lim T.C. A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Amer. Math. Soc. 80 (1974) 1123-1126
    • (1974) Bull. Amer. Math. Soc. , vol.80 , pp. 1123-1126
    • Lim, T.C.1
  • 18
    • 84972513402 scopus 로고
    • Multivalued contraction mappings
    • Nadler Jr. S.B. Multivalued contraction mappings. Pacific J. Math. 30 (1969) 475-488
    • (1969) Pacific J. Math. , vol.30 , pp. 475-488
    • Nadler Jr., S.B.1
  • 19
    • 0003346563 scopus 로고
    • Ultra-Techniques in Banach Space Theory
    • Queen's University, Kingston
    • Sims B. Ultra-Techniques in Banach Space Theory. Queen's Papers in Pure and Appl. Math. vol. 60 (1982), Queen's University, Kingston
    • (1982) Queen's Papers in Pure and Appl. Math. , vol.60
    • Sims, B.1
  • 20
    • 84971697799 scopus 로고
    • A class of spaces with weak normal structure
    • Sims B. A class of spaces with weak normal structure. Bull. Austral. Math. Soc. 49 (1994) 523-528
    • (1994) Bull. Austral. Math. Soc. , vol.49 , pp. 523-528
    • Sims, B.1
  • 21
    • 84893258670 scopus 로고    scopus 로고
    • Metric Fixed Point Theory for Multivalued Mappings
    • Xu H.K. Metric Fixed Point Theory for Multivalued Mappings. Dissertationes Math. (Rozprawy Mat.) 389 (2000)
    • (2000) Dissertationes Math. (Rozprawy Mat.) , vol.389
    • Xu, H.K.1
  • 22
    • 0035255238 scopus 로고    scopus 로고
    • Multivalued nonexpansive mappings in Banach spaces
    • Xu H.K. Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. 43 (2001) 693-706
    • (2001) Nonlinear Anal. , vol.43 , pp. 693-706
    • Xu, H.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.