-
2
-
-
0022012911
-
A mathematical model of the chemostat with a general class of functions describing nutrient uptake
-
Butler G.J., and Wolkowicz G.S.K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45 (1985) 138-151
-
(1985)
SIAM J. Appl. Math.
, vol.45
, pp. 138-151
-
-
Butler, G.J.1
Wolkowicz, G.S.K.2
-
4
-
-
0036489540
-
Asymptotic behavior of the chemostat model with delayed response in growth
-
El-Owaidy H.M., and Ismail M. Asymptotic behavior of the chemostat model with delayed response in growth. Chaos Solitons Fractals 13 (2002) 787-795
-
(2002)
Chaos Solitons Fractals
, vol.13
, pp. 787-795
-
-
El-Owaidy, H.M.1
Ismail, M.2
-
5
-
-
0141748139
-
Asymptotic behavior of a chemostat model with delayed response growth
-
El-Owaidy H.M., and Moniem A.A. Asymptotic behavior of a chemostat model with delayed response growth. Appl. Math. Comput. 147 (2004) 147-161
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 147-161
-
-
El-Owaidy, H.M.1
Moniem, A.A.2
-
6
-
-
0028419954
-
Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth
-
Ellermeyer S.F. Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth. SIAM J. Appl. Math. 54 (1994) 456-465
-
(1994)
SIAM J. Appl. Math.
, vol.54
, pp. 456-465
-
-
Ellermeyer, S.F.1
-
7
-
-
0003248828
-
Stability and Oscillations in Delay Differential Equations of Population Dynamics
-
Kluwer Academic, Dordrecht
-
Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Math. Appl. vol. 74 (1992), Kluwer Academic, Dordrecht
-
(1992)
Math. Appl.
, vol.74
-
-
Gopalsamy, K.1
-
8
-
-
0018868854
-
Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes
-
Hansen S.R., and Hubbell S.P. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science 207 (1980) 1491-1493
-
(1980)
Science
, vol.207
, pp. 1491-1493
-
-
Hansen, S.R.1
Hubbell, S.P.2
-
9
-
-
84990581010
-
Differential equation models of some parasitic infections: methods for the study of asymptotic behavior
-
Hirsch W.M., Hanisch H., and Gabriel J.-P. Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Comm. Pure Appl. Math. 38 (1985) 733-753
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 733-753
-
-
Hirsch, W.M.1
Hanisch, H.2
Gabriel, J.-P.3
-
10
-
-
0000875842
-
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms
-
Hsu S.B., Hubbell S., and Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32 (1977) 366-383
-
(1977)
SIAM J. Appl. Math.
, vol.32
, pp. 366-383
-
-
Hsu, S.B.1
Hubbell, S.2
Waltman, P.3
-
11
-
-
0032201685
-
Global asymptotic behavior of the chemostat: general response functions and different removal rates
-
(electronic)
-
Li B. Global asymptotic behavior of the chemostat: general response functions and different removal rates. SIAM J. Appl. Math. 59 (1999) 411-422 (electronic)
-
(1999)
SIAM J. Appl. Math.
, vol.59
, pp. 411-422
-
-
Li, B.1
-
12
-
-
0013693981
-
The Theory of the Chemostat. Dynamics of Microbial Competition
-
Cambridge Univ. Press, Cambridge
-
Smith H.L., and Waltman P. The Theory of the Chemostat. Dynamics of Microbial Competition. Cambridge Stud. Math. Biology vol. 13 (1995), Cambridge Univ. Press, Cambridge
-
(1995)
Cambridge Stud. Math. Biology
, vol.13
-
-
Smith, H.L.1
Waltman, P.2
-
13
-
-
11144280999
-
Convergence in the chemostat model with delayed response in growth
-
Wang W., and Ma Z. Convergence in the chemostat model with delayed response in growth. Systems Sci. Math. Sci. 12 (1999) 23-32
-
(1999)
Systems Sci. Math. Sci.
, vol.12
, pp. 23-32
-
-
Wang, W.1
Ma, Z.2
-
14
-
-
0026818163
-
Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates
-
Wolkowicz G.S.K., and Lu Z.Q. Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52 (1992) 222-233
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 222-233
-
-
Wolkowicz, G.S.K.1
Lu, Z.Q.2
-
15
-
-
0031208159
-
Global asymptotic behavior of a chemostat model with discrete delays
-
Wolkowicz G.S.K., and Xia H. Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57 (1997) 1019-1043
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 1019-1043
-
-
Wolkowicz, G.S.K.1
Xia, H.2
-
16
-
-
0031258276
-
Competition in the chemostat: a distributed delay model and its global asymptotic behavior
-
Wolkowicz G.S.K., Xia H., and Ruan S. Competition in the chemostat: a distributed delay model and its global asymptotic behavior. SIAM J. Appl. Math. 57 (1997) 1281-1310
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 1281-1310
-
-
Wolkowicz, G.S.K.1
Xia, H.2
Ruan, S.3
-
17
-
-
0011689727
-
Global dynamics of a chemostat competition model with distributed delay
-
Wolkowicz G.S.K., Xia H., and Wu J. Global dynamics of a chemostat competition model with distributed delay. J. Math. Biol. 38 (1999) 285-316
-
(1999)
J. Math. Biol.
, vol.38
, pp. 285-316
-
-
Wolkowicz, G.S.K.1
Xia, H.2
Wu, J.3
-
18
-
-
18644364234
-
Transient oscillation induced by delayed growth response in the chemostat
-
Xia H., Wolkowicz G.S.K., and Wang L. Transient oscillation induced by delayed growth response in the chemostat. J. Math. Biol. 50 (2005) 489-530
-
(2005)
J. Math. Biol.
, vol.50
, pp. 489-530
-
-
Xia, H.1
Wolkowicz, G.S.K.2
Wang, L.3
-
19
-
-
0037411677
-
Competition in the chemostat: convergence of a model with delayed response in growth
-
Yuan S., Han M., and Ma Z. Competition in the chemostat: convergence of a model with delayed response in growth. Chaos Solitons Fractals 17 (2003) 659-667
-
(2003)
Chaos Solitons Fractals
, vol.17
, pp. 659-667
-
-
Yuan, S.1
Han, M.2
Ma, Z.3
|