-
3
-
-
33746314863
-
Symplectic integration of Hamiltonian systems
-
0951-7715 001
-
Channell P J and Scovel C 1990 Symplectic integration of Hamiltonian systems Nonlinearity 3 231-59
-
(1990)
Nonlinearity
, vol.3
, Issue.2
, pp. 231-259
-
-
Channell, P.J.1
Scovel, C.2
-
6
-
-
0001299089
-
Difference-schemes for hamiltonian-formalism and symplectic-geometry
-
0254-9409
-
Feng K 1986 Difference-schemes for hamiltonian-formalism and symplectic-geometry J. Comput. Math. 4 279-89
-
(1986)
J. Comput. Math.
, vol.4
, pp. 279-289
-
-
Feng, K.1
-
7
-
-
0002961720
-
Construction of canonical difference-schemes for Hamiltonian-formalism via generating-functions
-
0254-9409
-
Feng K, Wu H M, Qin M Z and Wang D L 1989 Construction of canonical difference-schemes for Hamiltonian-formalism via generating-functions J. Comput. Math. 7 71-96
-
(1989)
J. Comput. Math.
, vol.7
, pp. 71-96
-
-
Feng, K.1
Wu, H.M.2
Qin, M.Z.3
Wang, D.L.4
-
8
-
-
45449123467
-
Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory
-
10.1016/0375-9601(88)90773-6 0375-9601 A
-
Ge Z and Marsden J M 1988 Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory Phys. Lett. A 133 134-9
-
(1988)
Phys. Lett.
, vol.133
, Issue.3
, pp. 134-139
-
-
Ge, Z.1
Marsden, J.M.2
-
10
-
-
0003014117
-
Time integration and discrete Hamiltonian systems
-
10.1007/s003329900018 0938-8974
-
Gonzalez O 1996 Time integration and discrete Hamiltonian systems J. Nonlinear Sci. 6 449-67
-
(1996)
J. Nonlinear Sci.
, vol.6
, Issue.5
, pp. 449-467
-
-
Gonzalez, O.1
-
12
-
-
0011615763
-
Canonical Runge-Kutta methods
-
10.1007/BF00945133 0044-2275
-
Lasagni F M 1988 Canonical Runge-Kutta methods Z. Angewandte Math. Phys. 39 952-3
-
(1988)
Z. Angewandte Math. Phys.
, vol.39
, Issue.6
, pp. 952-953
-
-
Lasagni, F.M.1
-
14
-
-
0033355765
-
Optimization flow control. I. Basic algorithm and convergence
-
10.1109/90.811451 1063-6692
-
Low S and Lapsley D E 1999 Optimization flow control. I. Basic algorithm and convergence IEEE/ACM Trans. Netw. 7 861-74
-
(1999)
IEEE/ACM Trans. Netw.
, vol.7
, Issue.6
, pp. 861-874
-
-
Low, S.1
Lapsley, D.E.2
-
17
-
-
0036993398
-
Variational integrators for degenerate Lagrangians, with application to point vortices
-
10.1109/CDC.2002.1184735
-
Rowley C W and Marsden J E 2002 Variational integrators for degenerate Lagrangians, with application to point vortices Proc. 41st IEEE Conf. Decision and Control 1521-7
-
(2002)
Proc. 41st IEEE Conf. Decision and Control
, vol.2
, pp. 1521-1527
-
-
Rowley, C.W.1
Marsden, J.E.2
-
18
-
-
84959193128
-
Discrete mechanics and variational integrators
-
Marsden J E and West M 2001 Discrete mechanics and variational integrators Acta Numerica vol 10 (Cambridge: Cambridge University Press) DOI http://dx.doi.org/10.1017/S096249290100006X
-
(2001)
Acta Numerica
, vol.10
-
-
Marsden, J.E.1
West, M.2
-
19
-
-
0348229409
-
Geometric integration using discrete gradients
-
10.1098/rsta.1999.0363 1364-503X A
-
McLachlan R I, Quispel G R W and Robidoux N 1999 Geometric integration using discrete gradients Phil. Trans. R. Soc. A 357 1021-45
-
(1999)
Phil. Trans. R. Soc.
, vol.357
, Issue.1754
, pp. 1021-1045
-
-
McLachlan, R.I.1
Quispel, G.R.W.2
Robidoux, N.3
-
21
-
-
0020798563
-
A canonical integration technique
-
0018-9499
-
Ruth R D 1983 A canonical integration technique IEEE Trans. Nucl. Sci. 30 2669-71
-
(1983)
IEEE Trans. Nucl. Sci.
, vol.30
, pp. 2669-2671
-
-
Ruth, R.D.1
-
22
-
-
0041473970
-
Hamiltonian methods of Runge-Kutta type and their variational interpretation
-
Suris Y 1990 Hamiltonian methods of Runge-Kutta type and their variational interpretation Math. Simul. 2 78-87
-
(1990)
Math. Simul.
, vol.2
, pp. 78-87
-
-
Suris, Y.1
-
23
-
-
0038041190
-
The canonicity of mappings generated by Runge-Kutta type methods when integrating the system
-
10.1016/0041-5553(89)90058-X 0041-5553
-
Suris Y B 1989 The canonicity of mappings generated by Runge-Kutta type methods when integrating the system USSR Comput. Math. Math. Phys. 29 138-44
-
(1989)
USSR Comput. Math. Math. Phys.
, vol.29
, Issue.1
, pp. 138-144
-
-
Suris, Y.B.1
|