메뉴 건너뛰기




Volumn 3697 LNCS, Issue , 2005, Pages 917-922

Approximating the Neyman-Pearson detector for swerling I targets with low complexity neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; BOUNDARY CONDITIONS; DECISION THEORY; GAUSSIAN NOISE (ELECTRONIC);

EID: 33646246402     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (12)
  • 2
    • 0025670892 scopus 로고
    • The multilayer perceptron as an aproximation to a Bayes optimal discriminant function
    • Ruck, D.W. et al: The multilayer perceptron as an aproximation to a Bayes optimal discriminant function. IEEE Trans, on Neural Networks. Vol. 1, No. 1 (1990) 296-298.
    • (1990) IEEE Trans, on Neural Networks , vol.1 , Issue.1 , pp. 296-298
    • Ruck, D.W.1
  • 3
    • 0025597157 scopus 로고
    • Neural network classification: A Bayesian interpretation
    • Wan, E.A: Neural network classification: A Bayesian interpretation. IEEE Trans. on Neural Networks. Vol. 1, No. 1, (1990) 303-305.
    • (1990) IEEE Trans. on Neural Networks , vol.1 , Issue.1 , pp. 303-305
    • Wan, E.A.1
  • 4
    • 0031268935 scopus 로고    scopus 로고
    • Neural networks for signal detection in non-gaussian noise
    • Gandhi, P. P., Ramamurti, V: Neural Networks for Signal Detection in Non-Gaussian Noise. IEEE Trans, on Signal Proc. Vol. 45, No. 11 (1997) 2846-2851.
    • (1997) IEEE Trans, on Signal Proc. , vol.45 , Issue.11 , pp. 2846-2851
    • Gandhi, P.P.1    Ramamurti, V.2
  • 6
    • 0029765034 scopus 로고    scopus 로고
    • Comparison of a neural network detector vs Neyman-Pearson optimal detector
    • USA.
    • Andina, D., Sanz-Gonzalez, J.L: Comparison of a neural network detector vs Neyman-Pearson optimal detector. Proc. of ICASSP-96, USA.(1996) 3573-3576.
    • (1996) Proc. of ICASSP-96 , pp. 3573-3576
    • Andina, D.1    Sanz-Gonzalez, J.L.2
  • 8
    • 0026170605 scopus 로고
    • Partitioning capabilities of two-layer neural networks
    • Makhoul, J, El-Jaroudi, A., Schwartz, R: Partitioning capabilities of two-layer neural networks. IEEE Trans, on Signal Proc. Vol. 39, No. 6 (1991)1435-1440.
    • (1991) IEEE Trans, on Signal Proc. , vol.39 , Issue.6 , pp. 1435-1440
    • Makhoul, J.1    El-Jaroudi, A.2    Schwartz, R.3
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T., Menhaj, M.B: Training feedforward networks with the Marquardt algorithm. IEEE Trans, on Neural Networks, Vol. 5, No. 6 (1994) 989-993.
    • (1994) IEEE Trans, on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 10
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • Nguyen, D., Widrow, B: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proc. of the Int. Joint Conf. on Neural Networks, Vol 3 (1990) 21-26.
    • (1990) Proc. of the Int. Joint Conf. on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 11
    • 0032739603 scopus 로고    scopus 로고
    • Multiparametric importance sampling for simulation of radar systems
    • Grajal, J., Asensio, A: Multiparametric importance sampling for simulation of radar systems. IEEE Trans, on Aerospace and Electronic Systems, Vol. 35, No. 1 (1999) 123-137.
    • (1999) IEEE Trans, on Aerospace and Electronic Systems , vol.35 , Issue.1 , pp. 123-137
    • Grajal, J.1    Asensio, A.2
  • 12
    • 0344286123 scopus 로고    scopus 로고
    • Performance analysis of neural network detectors by importance sampling techniques
    • Sanz-Gonzalez, J. L, Andina, D: Performance analysis of neural network detectors by importance sampling techniques. Neural Proc. Letters, No. 9, (1999) 257-269.
    • (1999) Neural Proc. Letters , Issue.9 , pp. 257-269
    • Sanz-Gonzalez, J.L.1    Andina, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.