메뉴 건너뛰기




Volumn 157, Issue 12, 2006, Pages 1641-1661

A new approach for discovering fuzzy quantitative sequential patterns in sequence databases

Author keywords

Data mining; Fuzzy sets; Quantitative data; Sequence data; Sequential patterns

Indexed keywords

BOUNDARY VALUE PROBLEMS; DATA MINING; DATABASE SYSTEMS; DECISION SUPPORT SYSTEMS; RELATIONAL DATABASE SYSTEMS;

EID: 33646238952     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2006.02.008     Document Type: Article
Times cited : (19)

References (31)
  • 1
    • 33646256016 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. 1994 Internat. Conf. Very Large Data Bases, 1994, pp. 487-499.
  • 2
    • 0029212693 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Mining sequential patterns, in: Proc. 1995 Internat. Conf. Data Engineering, 1995, pp. 3-14.
  • 3
    • 0031346257 scopus 로고    scopus 로고
    • W.H. Au, K.C.C. Chan, Mining fuzzy association rules, in: Proc. 6th Internat. Conf. Information Knowledge Management, Las Vegas, NV, 1997, pp. 209-215.
  • 4
    • 0031629657 scopus 로고    scopus 로고
    • W.H. Au, K.C.C. Chan, An effective algorithm for discovering fuzzy rules in relational databases, in: Proc. IEEE Internat. Conf. Fuzzy Systems, vol. II, 1998, pp. 1314-1319.
  • 5
    • 0033281173 scopus 로고    scopus 로고
    • W.H. Au, K.C.C. Chan, FARM: a data mining system for discovering fuzzy association rules, in: Proc. FUZZ-IEEE'99, vol. 3, 1999, pp. 22-25.
  • 6
    • 0037390557 scopus 로고    scopus 로고
    • Mining fuzzy association rules in a bank-account database
    • Au W.H., and Chan K.C.C. Mining fuzzy association rules in a bank-account database. IEEE Trans. Fuzzy Systems 11 (2003) 238-248
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , pp. 238-248
    • Au, W.H.1    Chan, K.C.C.2
  • 7
    • 0036850692 scopus 로고    scopus 로고
    • Fuzzy association rules and the extended mining algorithms
    • Chen G., and Wei Q. Fuzzy association rules and the extended mining algorithms. Inform. Sci. 147 (2002) 201-228
    • (2002) Inform. Sci. , vol.147 , pp. 201-228
    • Chen, G.1    Wei, Q.2
  • 8
    • 0036643492 scopus 로고    scopus 로고
    • Mining hybrid sequential patterns and sequential rules
    • Chen Y.L., Chen S.S., and Hsu P.Y. Mining hybrid sequential patterns and sequential rules. Inform. Systems 27 5 (2002) 345-362
    • (2002) Inform. Systems , vol.27 , Issue.5 , pp. 345-362
    • Chen, Y.L.1    Chen, S.S.2    Hsu, P.Y.3
  • 9
    • 0141921659 scopus 로고    scopus 로고
    • Discovering time-interval sequential patterns in sequence databases
    • Chen Y.L., Chiang M.C., and Ko M.T. Discovering time-interval sequential patterns in sequence databases. Expert Systems Appl. 25 3 (2003) 343-354
    • (2003) Expert Systems Appl. , vol.25 , Issue.3 , pp. 343-354
    • Chen, Y.L.1    Chiang, M.C.2    Ko, M.T.3
  • 11
    • 0034787097 scopus 로고    scopus 로고
    • A method for generation of alternatives by decision support systems
    • Fazlollahi B., and Vahidov R. A method for generation of alternatives by decision support systems. J. Management Inform. Systems 18 2 (2001) 229-250
    • (2001) J. Management Inform. Systems , vol.18 , Issue.2 , pp. 229-250
    • Fazlollahi, B.1    Vahidov, R.2
  • 12
    • 33646235958 scopus 로고    scopus 로고
    • A.W.C. Fu, M.H. Wong, S.C. Sze, W.C. Wong, W.L. Wong, W.K. Yu, Finding fuzzy sets for the mining of fuzzy association rules for numerical attributes, in: Proc. Internat. Symp. Intelligent Data Engineering Learning (IDEAL'98), Hong Kong, 1998, pp. 263-268.
  • 14
    • 0034593066 scopus 로고    scopus 로고
    • J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan: frequent pattern-projected sequential pattern mining, in: Proc. 2000 Internat. Conf. Knowledge Discovery and Data Mining, 2000, pp. 355-359.
  • 15
    • 0000172008 scopus 로고    scopus 로고
    • Mining association rules from quantitative data
    • Hong T.P., Kuo C.S., and Chi S.C. Mining association rules from quantitative data. Intell. Data Anal. 3 5 (1999) 363-376
    • (1999) Intell. Data Anal. , vol.3 , Issue.5 , pp. 363-376
    • Hong, T.P.1    Kuo, C.S.2    Chi, S.C.3
  • 16
    • 0033313378 scopus 로고    scopus 로고
    • T.P. Hong, C.S. Kuo, S.C. Chi, Mining fuzzy sequential patterns from quantitative data, 1999 IEEE Internat. Conf. Systems, Man, and Cybernetics, vol. 3, 1999, pp. 962-966.
  • 17
    • 2442465716 scopus 로고    scopus 로고
    • C. Kim, J.H. Lim, R. Ng, K. Shim, SQUIRE: sequential pattern mining with quantities, in: Proc. 20th Internat. Conf. Data Engineering, Boston, USA, 2004, p. 827.
  • 18
    • 0348132918 scopus 로고    scopus 로고
    • Mining fuzzy association rules in databases
    • Kuok C.M., Fu A., and Wong M.H. Mining fuzzy association rules in databases. SIGMOD Record 27 1 (1998) 41-46
    • (1998) SIGMOD Record , vol.27 , Issue.1 , pp. 41-46
    • Kuok, C.M.1    Fu, A.2    Wong, M.H.3
  • 19
    • 0033698810 scopus 로고    scopus 로고
    • J.W.T. Lee, An ordinal framework for data mining of fuzzy rules, in: FUZZ IEEE 2000, San Antonio, TX, 2000, pp. 399-404.
  • 20
    • 0000418873 scopus 로고    scopus 로고
    • An overview of membership function generation techniques for pattern recognition
    • Medasani S., Kim J., and Krishnapuram R. An overview of membership function generation techniques for pattern recognition. Internat. J. Approximate Reasoning 19 (1998) 391-417
    • (1998) Internat. J. Approximate Reasoning , vol.19 , pp. 391-417
    • Medasani, S.1    Kim, J.2    Krishnapuram, R.3
  • 22
    • 77957967271 scopus 로고    scopus 로고
    • J. Pei, J. Han, B. Mortazavi-Asl, H. Zhu, Mining access patterns efficiently from web logs, in: Proc. 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining, 2000, pp. 396-407.
  • 24
    • 84897708583 scopus 로고    scopus 로고
    • R. Srikant, R. Agrawal, Mining sequential patterns: generalizations and performance improvements, in: Proc. Fifth Internat. Conf. Extending Database Technology, 1996, pp. 3-17.
  • 25
    • 0030157416 scopus 로고    scopus 로고
    • R. Srikant, R. Agrawal, Mining quantitative association rules in large relational tables, in: Proc. 1996 ACM SIGMOD Internat. Conf. Management of Data, 1996, pp. 1-12.
  • 26
    • 84958955315 scopus 로고    scopus 로고
    • M. Vazirgiannis, A classification and relationship extraction scheme for relational databases based on fuzzy logic, in: Proc. Research Development Knowledge Discovery Data Mining, Melbourne, Australia, 1998, pp. 414-416.
  • 27
    • 17444431564 scopus 로고    scopus 로고
    • Mining sequential patterns from multi-dimensional sequence data
    • Yu C.C., and Chen Y.L. Mining sequential patterns from multi-dimensional sequence data. IEEE Trans. Knowledge Data Eng. 17 1 (2005) 136-140
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.1 , pp. 136-140
    • Yu, C.C.1    Chen, Y.L.2
  • 28
    • 0034512620 scopus 로고    scopus 로고
    • J.S. Yue, E. Tsang, D. Yenng, S. Daming, Mining fuzzy association rules with weighted items, in: Proc. IEEE Internat. Conf. Systems, Man, Cybernetics, Nashville, TN, 2000, pp. 1906-1911.
  • 29
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: an efficient algorithm for mining frequent sequences
    • Zaki M. SPADE: an efficient algorithm for mining frequent sequences. Mach. Learning 40 (2001) 31-60
    • (2001) Mach. Learning , vol.40 , pp. 31-60
    • Zaki, M.1
  • 30
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90 (1997) 111-127
    • (1997) Fuzzy Sets and Systems , vol.90 , pp. 111-127
    • Zadeh, L.A.1
  • 31
    • 0033313725 scopus 로고    scopus 로고
    • W. Zhang, Mining fuzzy quantitative association rules, in: Proc. 11th Internat. Conf. Tools Artificial Intelligence, Chicago, IL, 1999, pp. 99-102.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.