메뉴 건너뛰기




Volumn 3696 LNCS, Issue , 2005, Pages 357-362

Self-organizing map initialization

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; LEARNING SYSTEMS; LINEAR SYSTEMS; PROBLEM SOLVING;

EID: 33646169586     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11550822_56     Document Type: Conference Paper
Times cited : (26)

References (17)
  • 1
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78 (1990) 1464-1480
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 2
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan, G.W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms, Psychometrica 45 (1980) 325-341
    • (1980) Psychometrica , vol.45 , pp. 325-341
    • Milligan, G.W.1
  • 3
    • 0002550769 scopus 로고    scopus 로고
    • Refining initial points for K-Means clustering
    • Morgan Kaufmann, San Francisco, CA citeseer.ist.psu.edu/ bradley98refining.html
    • Bradley, P.S., Fayyad, U.M.: Refining initial points for K-Means clustering. In: Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA (1998) 91-99 citeseer.ist.psu.edu/bradley98refining. html.
    • (1998) Proc. 15th International Conf. on Machine Learning , pp. 91-99
    • Bradley, P.S.1    Fayyad, U.M.2
  • 4
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn, Lett. 20 (1999) 1027-1040
    • (1999) Pattern Recogn, Lett. , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 5
    • 84877734374 scopus 로고    scopus 로고
    • Comparison of four initialization techniques for the K-medians clustering algorithm
    • Proc. of Joint IAPR Int. Workshops SSPR 2000 and SPR 2000. Alacant (Spain), Springer-Verlag
    • Juan, A., Vidal, E.: Comparison of Four Initialization Techniques for the K-Medians Clustering Algorithm. In: Proc. of Joint IAPR Int. Workshops SSPR 2000 and SPR 2000. Volume 1876 of Lecture Notes in Computer Science., Alacant (Spain), Springer-Verlag (2000) 842-852
    • (2000) Lecture Notes in Computer Science. , vol.1876 , pp. 842-852
    • Juan, A.1    Vidal, E.2
  • 7
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs interpretability of classifications
    • Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biom 21 (1965) 768-769
    • (1965) Biom , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 8
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Cam, L.M.L., Neyman, J., eds.: Berkeley, CA, University of California Press
    • MacQueen, J.: Some methods for classification and analysis of multivariate observations. In Cam, L.M.L., Neyman, J., eds.: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 1., Berkeley, CA, University of California Press (1967) 281-297
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 9
    • 0036931833 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining partitionings
    • Edmonton, Canada, AAAI
    • Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining partitionings. In: Proceedings of AAAI 2002, Edmonton, Canada, AAAI (2002) 93-98
    • (2002) Proceedings of AAAI 2002 , pp. 93-98
    • Strehl, A.1    Ghosh, J.2
  • 11
    • 2942628272 scopus 로고    scopus 로고
    • Improving the self-organizing feature map algorithm using an efficient initialization scheme
    • Mu-Chun Su, T.K.L., Chang, H.T.: Improving the self-organizing feature map algorithm using an efficient initialization scheme. Tamkang Journal of Science and Engineering 5 (2002) 35-48
    • (2002) Tamkang Journal of Science and Engineering , vol.5 , pp. 35-48
    • Mu-Chun Su, T.K.L.1    Chang, H.T.2
  • 13
    • 33646168703 scopus 로고    scopus 로고
    • Apport de l'analyse en composantes principales pour l'initialisation et la validation de cartes de kohonen
    • Nancy, INRIA
    • Elemento, O.: Apport de l'analyse en composantes principales pour l'initialisation et la validation de cartes de kohonen. In: Septième journées de la Société Francophone de classification, Nancy, INRIA (1999)
    • (1999) Septième Journées de la Société Francophone de Classification
    • Elemento, O.1
  • 15
    • 3142699390 scopus 로고    scopus 로고
    • New classification quality estimators for analysis of documentary information: Application to patent analysis and web mapping
    • Lamirel, J.C., Al Shehabi, S., Francois, C., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application to patent analysis and web mapping. Scientometrics 60 (2004) 445-462
    • (2004) Scientometrics , vol.60 , pp. 445-462
    • Lamirel, J.C.1    Al Shehabi, S.2    Francois, C.3    Hoffmann, M.4
  • 16
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • Opitz, O., Lausen, B., Klar, R., eds.: Berlin, Springer
    • Ultsch, A.: Self-organizing neural networks for visualization and classification. In Opitz, O., Lausen, B., Klar, R., eds.: Information and Classification, Berlin, Springer (1993) 307-313
    • (1993) Information and Classification , pp. 307-313
    • Ultsch, A.1
  • 17
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18 (1969) 401-409
    • (1969) IEEE Transactions on Computers , vol.18 , pp. 401-409
    • W. Jr., J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.