메뉴 건너뛰기




Volumn 10, Issue 9, 2006, Pages 850-864

An approach to fuzzy default reasoning for function approximation

Author keywords

Default reasoning; Fuzzy modeling; Fuzzy number valued function; Fuzzy reasoning; Genetics based machine learning

Indexed keywords


EID: 33646050639     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-005-0005-y     Document Type: Article
Times cited : (13)

References (47)
  • 2
    • 0003742408 scopus 로고
    • Introduction to interval computations
    • Academic, New York
    • Alefeld G., Herzberger J. (1983). Introduction to interval computations. Academic, New York
    • (1983)
    • Alefeld, G.1    Herzberger, J.2
  • 3
    • 0030283418 scopus 로고    scopus 로고
    • From statistical knowledge bases to degrees of belief
    • Bacchus F., Grove AJ., Halpern JY., Koller D. (1996). From statistical knowledge bases to degrees of belief. Artif Intell 87(1-2):75-143
    • (1996) Artif Intell , vol.87 , Issue.1-2 , pp. 75-143
    • Bacchus, F.1    Grove, A.J.2    Halpern, J.Y.3    Koller, D.4
  • 4
    • 0343801837 scopus 로고
    • Extracting core information from inconsistent fuzzy control rules
    • Bien Z., Yu W. (1995). Extracting core information from inconsistent fuzzy control rules. Fuzzy Sets Syst 71(1):95-111
    • (1995) Fuzzy Sets Syst , vol.71 , Issue.1 , pp. 95-111
    • Bien, Z.1    Yu, W.2
  • 5
    • 0342779705 scopus 로고    scopus 로고
    • Prioritizing default logic
    • Hölldobler S (eds) Kluwer, Dordrecht
    • Brewka G., Eiter T. (2000). Prioritizing default logic. In: Hölldobler S (eds). Intellectics and computational logic. Kluwer, Dordrecht, pp. 27-45
    • (2000) Intellectics and Computational Logic , pp. 27-45
    • Brewka, G.1    Eiter, T.2
  • 6
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • Castillo L., Gonzalez A., Perez R. (2001). Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst 120(2):309-321
    • (2001) Fuzzy Sets Syst , vol.120 , Issue.2 , pp. 309-321
    • Castillo, L.1    Gonzalez, A.2    Perez, R.3
  • 7
    • 0035501966 scopus 로고    scopus 로고
    • Use of a fuzzy machine learning technique in the knowledge acquisition process
    • Castro JL., Castro-Schez JJ., Zurita JM. (2001). Use of a fuzzy machine learning technique in the knowledge acquisition process. Fuzzy Sets Syst 123(3):307-320
    • (2001) Fuzzy Sets Syst , vol.123 , Issue.3 , pp. 307-320
    • Castro, J.L.1    Castro-Schez, J.J.2    Zurita, J.M.3
  • 9
    • 0031077287 scopus 로고    scopus 로고
    • Applicability of the fuzzy operators in the design of fuzzy logic controllers
    • Cordon O., Herrera F., Peregrin A. (1997). Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets Syst 86(1):15-41
    • (1997) Fuzzy Sets Syst , vol.86 , Issue.1 , pp. 15-41
    • Cordon, O.1    Herrera, F.2    Peregrin, A.3
  • 10
    • 0034299457 scopus 로고    scopus 로고
    • Expressing preferences in default logic
    • Delgrande JP., Schaub T. (2000). Expressing preferences in default logic. Artif Intell 123(1-2):41-87
    • (2000) Artif Intell , vol.123 , Issue.1-2 , pp. 41-87
    • Delgrande, J.P.1    Schaub, T.2
  • 11
    • 0001245395 scopus 로고
    • Possibilistic logic
    • Gabbay DM., Hogger CJ., Robinson JA (eds) Nonmonotonic reasoning and uncertain reasoning Oxford University Press, Oxford
    • Dubois D., Lang J., Prade H. (1994). Possibilistic logic. In: Gabbay DM., Hogger CJ., Robinson JA (eds). Handbook of logic in artificial intelligence and logic programming vol 3, Nonmonotonic reasoning and uncertain reasoning. Oxford University Press, Oxford, pp. 439-513
    • (1994) Handbook of Logic in Artificial Intelligence and Logic Programming , vol.3 , pp. 439-513
    • Dubois, D.1    Lang, J.2    Prade, H.3
  • 12
    • 0028381757 scopus 로고
    • Automated reasoning using possibilistic logic: Semantics, brief revision, and variable certainty weights
    • Dubois D., Lang J., Prade H. (1994). Automated reasoning using possibilistic logic: Semantics, brief revision, and variable certainty weights. IEEE Trans Knowl Data Eng 6(1):64-71
    • (1994) IEEE Trans Knowl Data Eng , vol.6 , Issue.1 , pp. 64-71
    • Dubois, D.1    Lang, J.2    Prade, H.3
  • 13
    • 84962857625 scopus 로고
    • The principle of minimum specificity as a basis for evidential reasoning
    • Bouchon B., Yager RR (eds). Springer, Berlin Heidelberg New York
    • Dubois D., Prade H. (1987). The principle of minimum specificity as a basis for evidential reasoning. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 75-84
    • (1987) Uncertainty in Knowledge Based Systems (Lecture Notes in Computer Science 286) , pp. 75-84
    • Dubois, D.1    Prade, H.2
  • 14
    • 0024033987 scopus 로고
    • Default reasoning and possibility theory
    • Dubois D., Prade H. (1988). Default reasoning and possibility theory. Artif Intell 35(2):243-257
    • (1988) Artif Intell , vol.35 , Issue.2 , pp. 243-257
    • Dubois, D.1    Prade, H.2
  • 15
    • 0030577310 scopus 로고    scopus 로고
    • What are fuzzy rules and how to use them
    • Dubois D., Prade H. (1996). What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2):169-185
    • (1996) Fuzzy Sets Syst , vol.84 , Issue.2 , pp. 169-185
    • Dubois, D.1    Prade, H.2
  • 16
    • 0035575516 scopus 로고    scopus 로고
    • An argument-based approach to reasoning with specificity
    • Dung PM., Son TC. (2001). An argument-based approach to reasoning with specificity. Artif Intell 133(1-2):35-85
    • (2001) Artif Intell , vol.133 , Issue.1-2 , pp. 35-85
    • Dung, P.M.1    Son, T.C.2
  • 17
    • 0002424806 scopus 로고    scopus 로고
    • A unified parameterized formulation of reasoning in fuzzy modeling and control
    • Emami MR., Turksen IB., Goldenberg AA. (1999). A unified parameterized formulation of reasoning in fuzzy modeling and control. Fuzzy Sets Syst 108(1):59-81
    • (1999) Fuzzy Sets Syst , vol.108 , Issue.1 , pp. 59-81
    • Emami, M.R.1    Turksen, I.B.2    Goldenberg, A.A.3
  • 18
    • 0030190238 scopus 로고    scopus 로고
    • Qualitative probabilities for default reasoning, belief revision, and causal modeling
    • Goldszmidt M., Pearl J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif Intell 84(1-2):57-112
    • (1996) Artif Intell , vol.84 , Issue.1-2 , pp. 57-112
    • Goldszmidt, M.1    Pearl, J.2
  • 19
    • 0001682768 scopus 로고    scopus 로고
    • Learning of a fuzzy control rule base using messy genetic algorithm
    • Herrera F., Verdegay JL (eds) Physica-Verlag, Heidelberg
    • Hoffmann F., Pfister G. (1996). Learning of a fuzzy control rule base using messy genetic algorithm. In: Herrera F., Verdegay JL (eds). Genetic algorithm and soft computing. Physica-Verlag, Heidelberg, pp. 279-305
    • (1996) Genetic Algorithm and Soft Computing , pp. 279-305
    • Hoffmann, F.1    Pfister, G.2
  • 20
    • 0031275420 scopus 로고    scopus 로고
    • Evolutionary design of a fuzzy knowledge base for a mobile robot
    • Hoffmann F., Pfister G. (1997). Evolutionary design of a fuzzy knowledge base for a mobile robot. Int J Approx Reason 17(4):447-469
    • (1997) Int J Approx Reason , vol.17 , Issue.4 , pp. 447-469
    • Hoffmann, F.1    Pfister, G.2
  • 21
    • 0001639606 scopus 로고    scopus 로고
    • Trade-off between computation time and number of rules for fuzzy mining from quantitative data
    • Hong T-P., Kuo C-S., Chi S-C. (2001). Trade-off between computation time and number of rules for fuzzy mining from quantitative data. Int J Uncertain Fuzziness Knowledge-Based Syst 9(5):587-604
    • (2001) Int J Uncertain Fuzziness Knowledge-Based Syst , vol.9 , Issue.5 , pp. 587-604
    • Hong, T.-P.1    Kuo, C.-S.2    Chi, S.-C.3
  • 24
    • 0033281393 scopus 로고    scopus 로고
    • Fuzzy reasoning method in fuzzy rule-based systems with general and specific rules for function approximation
    • Seoul, Korea
    • Ishibuchi H. (1999). Fuzzy reasoning method in fuzzy rule-based systems with general and specific rules for function approximation. In: Proceedings of 8th IEEE international conference on fuzzy systems, Seoul, Korea, pp 198-203
    • (1999) Proceedings of 8th IEEE International Conference on Fuzzy Systems , pp. 198-203
    • Ishibuchi, H.1
  • 25
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • Ishibuchi H., Nakashima T., Murata T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Inform Sci 136(1-4):109-133
    • (2001) Inform Sci , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 26
    • 23944451642 scopus 로고    scopus 로고
    • Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining
    • Springer, Berlin
    • Ishibuchi H., Nakashima T., Nii M. (2004). Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining, Springer, Berlin
    • (2004)
    • Ishibuchi, H.1    Nakashima, T.2    Nii, M.3
  • 27
    • 0003796687 scopus 로고
    • Introduction to Fuzzy Arithmetic
    • Van Nostrand Reinhold, New York
    • Kaufmann A., Gupta MM. (1985). Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York
    • (1985)
    • Kaufmann, A.1    Gupta, M.M.2
  • 29
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Knorr EM., Ng RT., Tucakov V. (2000). Distance-based outliers: algorithms and applications. Int J Very Large Data Bases 8(3): 237-253
    • (2000) Int J Very Large Data Bases , vol.8 , Issue.3 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 32
    • 0003236553 scopus 로고
    • Methods and applications of interval analysis
    • Philadelphia
    • Moore RE. (1979). Methods and applications of interval analysis. SIAM Studies in Applied Mathematics, Philadelphia
    • (1979) SIAM Studies in Applied Mathematics
    • Moore, R.E.1
  • 33
    • 0026153420 scopus 로고
    • The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning
    • Poole D. (1991). The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning. Artif Intell 49(1-3):281-307
    • (1991) Artif Intell , vol.49 , Issue.1-3 , pp. 281-307
    • Poole, D.1
  • 34
    • 49149147322 scopus 로고
    • A logic for default reasoning
    • Reiter R. (1980). A logic for default reasoning. Artif Intell 13(1-2):81-132
    • (1980) Artif Intell , vol.13 , Issue.1-2 , pp. 81-132
    • Reiter, R.1
  • 35
    • 0346707445 scopus 로고    scopus 로고
    • Comments on the benchmarks in "a proposal for improving the accuracy of linguistic modeling" and related articles
    • Roubos JA., Babuska R. (2003). Comments on the benchmarks in "a proposal for improving the accuracy of linguistic modeling" and related articles. IEEE Trans Fuzzy Syst 11(6):861-865
    • (2003) IEEE Trans Fuzzy Syst , vol.11 , Issue.6 , pp. 861-865
    • Roubos, J.A.1    Babuska, R.2
  • 36
    • 0003584577 scopus 로고
    • Artificial intelligence: A modern approach
    • Prentice-Hall, Upper Saddle River
    • Russell SJ., Norvig P. (1995). Artificial intelligence: A modern approach. Prentice-Hall, Upper Saddle River
    • (1995)
    • Russell, S.J.1    Norvig, P.2
  • 37
    • 33646018439 scopus 로고    scopus 로고
    • Hypothesis-driven discovery of exception rules based on thresholds scheduling
    • (in Japanese)
    • Suzuki E. (2000). Hypothesis-driven discovery of exception rules based on thresholds scheduling. J Japanese Soc Artif Intell 15(4):649-656(in Japanese)
    • (2000) J Japanese Soc Artif Intell , vol.15 , Issue.4 , pp. 649-656
    • Suzuki, E.1
  • 38
    • 84947703686 scopus 로고    scopus 로고
    • Discovery of surprising exception rules based on intensity of implication
    • Zytkow JM., Quafafou M (eds) (Lecture Notes in Computer Science 1510) Springer, Berlin Heidelberg New York
    • 38. Suzuki E., Kodratoff Y. (1998). Discovery of surprising exception rules based on intensity of implication. In: Zytkow JM., Quafafou M (eds). Principles of data mining and knowledge discovery (PKDD) (Lecture Notes in Computer Science 1510). Springer, Berlin Heidelberg New York
    • (1998) Principles of Data Mining and Knowledge Discovery (PKDD)
    • Suzuki, E.1    Kodratoff, Y.2
  • 39
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116-132
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 41
    • 0346687118 scopus 로고    scopus 로고
    • A synthesis of fuzzy rule-based system verification
    • Viaene S., Wets G., Vanthienen J. (2000). A synthesis of fuzzy rule-based system verification. Fuzzy Sets Syst 113(2):253-265
    • (2000) Fuzzy Sets Syst , vol.113 , Issue.2 , pp. 253-265
    • Viaene, S.1    Wets, G.2    Vanthienen, J.3
  • 42
    • 0023089803 scopus 로고
    • Using approximate reasoning to represent default knowledge
    • Yager RR. (1987). Using approximate reasoning to represent default knowledge. Artif Intell 31(1):99-112
    • (1987) Artif Intell , vol.31 , Issue.1 , pp. 99-112
    • Yager, R.R.1
  • 43
    • 84985150971 scopus 로고
    • Possibilistic qualification and default rules
    • Bouchon B., Yager RR (eds). (Lecture Notes in Computer Science 286) Springer, Berlin Heidelberg New York
    • Yager RR. (1987). Possibilistic qualification and default rules. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 41-57
    • (1987) Uncertainty in Knowledge Based Systems , pp. 41-57
    • Yager, R.R.1
  • 44
    • 84973022116 scopus 로고
    • A generalized view of non-monotonic knowledge: A set of theoretic perspective
    • Yager RR. (1988). A generalized view of non-monotonic knowledge: A set of theoretic perspective. Int J Gen Syst 14:251-265
    • (1988) Int J Gen Syst , vol.14 , pp. 251-265
    • Yager, R.R.1
  • 45
    • 0024133119 scopus 로고
    • A mathematical programming approach to inference with the capability to implement default rules
    • Yager RR. (1988). A mathematical programming approach to inference with the capability to implement default rules. Int J Man-Mach Stud 29:685-714
    • (1988) Int J Man-Mach Stud , vol.29 , pp. 685-714
    • Yager, R.R.1
  • 46
    • 0027632444 scopus 로고
    • On a hierarchical structure for fuzzy modeling and control
    • Yager RR. (1993). On a hierarchical structure for fuzzy modeling and control. IEEE Trans Syst Man Cybern 23(4):1189-1197
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.4 , pp. 1189-1197
    • Yager, R.R.1
  • 47
    • 0026182752 scopus 로고
    • On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input
    • Yager RR., Larsen HL. (1991). On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input. IEEE Trans Syst Man Cybern 21(4):790-801
    • (1991) IEEE Trans Syst Man Cybern , vol.21 , Issue.4 , pp. 790-801
    • Yager, R.R.1    Larsen, H.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.