-
1
-
-
0001371923
-
Fast discovery of association rules
-
Fayyad UM., Piatetsky-Shapiro G., Smyth P., Uthurusamy R (eds). AAAI, Metro Park
-
Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo AI. (1996). Fast discovery of association rules. In: Fayyad UM., Piatetsky-Shapiro G., Smyth P., Uthurusamy R (eds). Advances in knowledge discovery and data mining. AAAI, Metro Park, pp. 307-328
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
2
-
-
0003742408
-
Introduction to interval computations
-
Academic, New York
-
Alefeld G., Herzberger J. (1983). Introduction to interval computations. Academic, New York
-
(1983)
-
-
Alefeld, G.1
Herzberger, J.2
-
3
-
-
0030283418
-
From statistical knowledge bases to degrees of belief
-
Bacchus F., Grove AJ., Halpern JY., Koller D. (1996). From statistical knowledge bases to degrees of belief. Artif Intell 87(1-2):75-143
-
(1996)
Artif Intell
, vol.87
, Issue.1-2
, pp. 75-143
-
-
Bacchus, F.1
Grove, A.J.2
Halpern, J.Y.3
Koller, D.4
-
4
-
-
0343801837
-
Extracting core information from inconsistent fuzzy control rules
-
Bien Z., Yu W. (1995). Extracting core information from inconsistent fuzzy control rules. Fuzzy Sets Syst 71(1):95-111
-
(1995)
Fuzzy Sets Syst
, vol.71
, Issue.1
, pp. 95-111
-
-
Bien, Z.1
Yu, W.2
-
5
-
-
0342779705
-
Prioritizing default logic
-
Hölldobler S (eds) Kluwer, Dordrecht
-
Brewka G., Eiter T. (2000). Prioritizing default logic. In: Hölldobler S (eds). Intellectics and computational logic. Kluwer, Dordrecht, pp. 27-45
-
(2000)
Intellectics and Computational Logic
, pp. 27-45
-
-
Brewka, G.1
Eiter, T.2
-
6
-
-
0035897955
-
Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
-
Castillo L., Gonzalez A., Perez R. (2001). Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst 120(2):309-321
-
(2001)
Fuzzy Sets Syst
, vol.120
, Issue.2
, pp. 309-321
-
-
Castillo, L.1
Gonzalez, A.2
Perez, R.3
-
7
-
-
0035501966
-
Use of a fuzzy machine learning technique in the knowledge acquisition process
-
Castro JL., Castro-Schez JJ., Zurita JM. (2001). Use of a fuzzy machine learning technique in the knowledge acquisition process. Fuzzy Sets Syst 123(3):307-320
-
(2001)
Fuzzy Sets Syst
, vol.123
, Issue.3
, pp. 307-320
-
-
Castro, J.L.1
Castro-Schez, J.J.2
Zurita, J.M.3
-
9
-
-
0031077287
-
Applicability of the fuzzy operators in the design of fuzzy logic controllers
-
Cordon O., Herrera F., Peregrin A. (1997). Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets Syst 86(1):15-41
-
(1997)
Fuzzy Sets Syst
, vol.86
, Issue.1
, pp. 15-41
-
-
Cordon, O.1
Herrera, F.2
Peregrin, A.3
-
10
-
-
0034299457
-
Expressing preferences in default logic
-
Delgrande JP., Schaub T. (2000). Expressing preferences in default logic. Artif Intell 123(1-2):41-87
-
(2000)
Artif Intell
, vol.123
, Issue.1-2
, pp. 41-87
-
-
Delgrande, J.P.1
Schaub, T.2
-
11
-
-
0001245395
-
Possibilistic logic
-
Gabbay DM., Hogger CJ., Robinson JA (eds) Nonmonotonic reasoning and uncertain reasoning Oxford University Press, Oxford
-
Dubois D., Lang J., Prade H. (1994). Possibilistic logic. In: Gabbay DM., Hogger CJ., Robinson JA (eds). Handbook of logic in artificial intelligence and logic programming vol 3, Nonmonotonic reasoning and uncertain reasoning. Oxford University Press, Oxford, pp. 439-513
-
(1994)
Handbook of Logic in Artificial Intelligence and Logic Programming
, vol.3
, pp. 439-513
-
-
Dubois, D.1
Lang, J.2
Prade, H.3
-
12
-
-
0028381757
-
Automated reasoning using possibilistic logic: Semantics, brief revision, and variable certainty weights
-
Dubois D., Lang J., Prade H. (1994). Automated reasoning using possibilistic logic: Semantics, brief revision, and variable certainty weights. IEEE Trans Knowl Data Eng 6(1):64-71
-
(1994)
IEEE Trans Knowl Data Eng
, vol.6
, Issue.1
, pp. 64-71
-
-
Dubois, D.1
Lang, J.2
Prade, H.3
-
13
-
-
84962857625
-
The principle of minimum specificity as a basis for evidential reasoning
-
Bouchon B., Yager RR (eds). Springer, Berlin Heidelberg New York
-
Dubois D., Prade H. (1987). The principle of minimum specificity as a basis for evidential reasoning. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 75-84
-
(1987)
Uncertainty in Knowledge Based Systems (Lecture Notes in Computer Science 286)
, pp. 75-84
-
-
Dubois, D.1
Prade, H.2
-
14
-
-
0024033987
-
Default reasoning and possibility theory
-
Dubois D., Prade H. (1988). Default reasoning and possibility theory. Artif Intell 35(2):243-257
-
(1988)
Artif Intell
, vol.35
, Issue.2
, pp. 243-257
-
-
Dubois, D.1
Prade, H.2
-
15
-
-
0030577310
-
What are fuzzy rules and how to use them
-
Dubois D., Prade H. (1996). What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2):169-185
-
(1996)
Fuzzy Sets Syst
, vol.84
, Issue.2
, pp. 169-185
-
-
Dubois, D.1
Prade, H.2
-
16
-
-
0035575516
-
An argument-based approach to reasoning with specificity
-
Dung PM., Son TC. (2001). An argument-based approach to reasoning with specificity. Artif Intell 133(1-2):35-85
-
(2001)
Artif Intell
, vol.133
, Issue.1-2
, pp. 35-85
-
-
Dung, P.M.1
Son, T.C.2
-
17
-
-
0002424806
-
A unified parameterized formulation of reasoning in fuzzy modeling and control
-
Emami MR., Turksen IB., Goldenberg AA. (1999). A unified parameterized formulation of reasoning in fuzzy modeling and control. Fuzzy Sets Syst 108(1):59-81
-
(1999)
Fuzzy Sets Syst
, vol.108
, Issue.1
, pp. 59-81
-
-
Emami, M.R.1
Turksen, I.B.2
Goldenberg, A.A.3
-
18
-
-
0030190238
-
Qualitative probabilities for default reasoning, belief revision, and causal modeling
-
Goldszmidt M., Pearl J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif Intell 84(1-2):57-112
-
(1996)
Artif Intell
, vol.84
, Issue.1-2
, pp. 57-112
-
-
Goldszmidt, M.1
Pearl, J.2
-
19
-
-
0001682768
-
Learning of a fuzzy control rule base using messy genetic algorithm
-
Herrera F., Verdegay JL (eds) Physica-Verlag, Heidelberg
-
Hoffmann F., Pfister G. (1996). Learning of a fuzzy control rule base using messy genetic algorithm. In: Herrera F., Verdegay JL (eds). Genetic algorithm and soft computing. Physica-Verlag, Heidelberg, pp. 279-305
-
(1996)
Genetic Algorithm and Soft Computing
, pp. 279-305
-
-
Hoffmann, F.1
Pfister, G.2
-
20
-
-
0031275420
-
Evolutionary design of a fuzzy knowledge base for a mobile robot
-
Hoffmann F., Pfister G. (1997). Evolutionary design of a fuzzy knowledge base for a mobile robot. Int J Approx Reason 17(4):447-469
-
(1997)
Int J Approx Reason
, vol.17
, Issue.4
, pp. 447-469
-
-
Hoffmann, F.1
Pfister, G.2
-
21
-
-
0001639606
-
Trade-off between computation time and number of rules for fuzzy mining from quantitative data
-
Hong T-P., Kuo C-S., Chi S-C. (2001). Trade-off between computation time and number of rules for fuzzy mining from quantitative data. Int J Uncertain Fuzziness Knowledge-Based Syst 9(5):587-604
-
(2001)
Int J Uncertain Fuzziness Knowledge-Based Syst
, vol.9
, Issue.5
, pp. 587-604
-
-
Hong, T.-P.1
Kuo, C.-S.2
Chi, S.-C.3
-
24
-
-
0033281393
-
Fuzzy reasoning method in fuzzy rule-based systems with general and specific rules for function approximation
-
Seoul, Korea
-
Ishibuchi H. (1999). Fuzzy reasoning method in fuzzy rule-based systems with general and specific rules for function approximation. In: Proceedings of 8th IEEE international conference on fuzzy systems, Seoul, Korea, pp 198-203
-
(1999)
Proceedings of 8th IEEE International Conference on Fuzzy Systems
, pp. 198-203
-
-
Ishibuchi, H.1
-
25
-
-
0035426682
-
Three-objective genetics-based machine learning for linguistic rule extraction
-
Ishibuchi H., Nakashima T., Murata T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Inform Sci 136(1-4):109-133
-
(2001)
Inform Sci
, vol.136
, Issue.1-4
, pp. 109-133
-
-
Ishibuchi, H.1
Nakashima, T.2
Murata, T.3
-
26
-
-
23944451642
-
Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining
-
Springer, Berlin
-
Ishibuchi H., Nakashima T., Nii M. (2004). Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining, Springer, Berlin
-
(2004)
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
27
-
-
0003796687
-
Introduction to Fuzzy Arithmetic
-
Van Nostrand Reinhold, New York
-
Kaufmann A., Gupta MM. (1985). Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York
-
(1985)
-
-
Kaufmann, A.1
Gupta, M.M.2
-
29
-
-
0034133513
-
Distance-based outliers: Algorithms and applications
-
Knorr EM., Ng RT., Tucakov V. (2000). Distance-based outliers: algorithms and applications. Int J Very Large Data Bases 8(3): 237-253
-
(2000)
Int J Very Large Data Bases
, vol.8
, Issue.3
, pp. 237-253
-
-
Knorr, E.M.1
Ng, R.T.2
Tucakov, V.3
-
32
-
-
0003236553
-
Methods and applications of interval analysis
-
Philadelphia
-
Moore RE. (1979). Methods and applications of interval analysis. SIAM Studies in Applied Mathematics, Philadelphia
-
(1979)
SIAM Studies in Applied Mathematics
-
-
Moore, R.E.1
-
33
-
-
0026153420
-
The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning
-
Poole D. (1991). The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning. Artif Intell 49(1-3):281-307
-
(1991)
Artif Intell
, vol.49
, Issue.1-3
, pp. 281-307
-
-
Poole, D.1
-
34
-
-
49149147322
-
A logic for default reasoning
-
Reiter R. (1980). A logic for default reasoning. Artif Intell 13(1-2):81-132
-
(1980)
Artif Intell
, vol.13
, Issue.1-2
, pp. 81-132
-
-
Reiter, R.1
-
35
-
-
0346707445
-
Comments on the benchmarks in "a proposal for improving the accuracy of linguistic modeling" and related articles
-
Roubos JA., Babuska R. (2003). Comments on the benchmarks in "a proposal for improving the accuracy of linguistic modeling" and related articles. IEEE Trans Fuzzy Syst 11(6):861-865
-
(2003)
IEEE Trans Fuzzy Syst
, vol.11
, Issue.6
, pp. 861-865
-
-
Roubos, J.A.1
Babuska, R.2
-
36
-
-
0003584577
-
Artificial intelligence: A modern approach
-
Prentice-Hall, Upper Saddle River
-
Russell SJ., Norvig P. (1995). Artificial intelligence: A modern approach. Prentice-Hall, Upper Saddle River
-
(1995)
-
-
Russell, S.J.1
Norvig, P.2
-
37
-
-
33646018439
-
Hypothesis-driven discovery of exception rules based on thresholds scheduling
-
(in Japanese)
-
Suzuki E. (2000). Hypothesis-driven discovery of exception rules based on thresholds scheduling. J Japanese Soc Artif Intell 15(4):649-656(in Japanese)
-
(2000)
J Japanese Soc Artif Intell
, vol.15
, Issue.4
, pp. 649-656
-
-
Suzuki, E.1
-
38
-
-
84947703686
-
Discovery of surprising exception rules based on intensity of implication
-
Zytkow JM., Quafafou M (eds) (Lecture Notes in Computer Science 1510) Springer, Berlin Heidelberg New York
-
38. Suzuki E., Kodratoff Y. (1998). Discovery of surprising exception rules based on intensity of implication. In: Zytkow JM., Quafafou M (eds). Principles of data mining and knowledge discovery (PKDD) (Lecture Notes in Computer Science 1510). Springer, Berlin Heidelberg New York
-
(1998)
Principles of Data Mining and Knowledge Discovery (PKDD)
-
-
Suzuki, E.1
Kodratoff, Y.2
-
39
-
-
0021892282
-
Fuzzy identification of systems and its applications to modeling and control
-
Takagi T., Sugeno M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116-132
-
(1985)
IEEE Trans Syst Man Cybern
, vol.15
, Issue.1
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
41
-
-
0346687118
-
A synthesis of fuzzy rule-based system verification
-
Viaene S., Wets G., Vanthienen J. (2000). A synthesis of fuzzy rule-based system verification. Fuzzy Sets Syst 113(2):253-265
-
(2000)
Fuzzy Sets Syst
, vol.113
, Issue.2
, pp. 253-265
-
-
Viaene, S.1
Wets, G.2
Vanthienen, J.3
-
42
-
-
0023089803
-
Using approximate reasoning to represent default knowledge
-
Yager RR. (1987). Using approximate reasoning to represent default knowledge. Artif Intell 31(1):99-112
-
(1987)
Artif Intell
, vol.31
, Issue.1
, pp. 99-112
-
-
Yager, R.R.1
-
43
-
-
84985150971
-
Possibilistic qualification and default rules
-
Bouchon B., Yager RR (eds). (Lecture Notes in Computer Science 286) Springer, Berlin Heidelberg New York
-
Yager RR. (1987). Possibilistic qualification and default rules. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 41-57
-
(1987)
Uncertainty in Knowledge Based Systems
, pp. 41-57
-
-
Yager, R.R.1
-
44
-
-
84973022116
-
A generalized view of non-monotonic knowledge: A set of theoretic perspective
-
Yager RR. (1988). A generalized view of non-monotonic knowledge: A set of theoretic perspective. Int J Gen Syst 14:251-265
-
(1988)
Int J Gen Syst
, vol.14
, pp. 251-265
-
-
Yager, R.R.1
-
45
-
-
0024133119
-
A mathematical programming approach to inference with the capability to implement default rules
-
Yager RR. (1988). A mathematical programming approach to inference with the capability to implement default rules. Int J Man-Mach Stud 29:685-714
-
(1988)
Int J Man-Mach Stud
, vol.29
, pp. 685-714
-
-
Yager, R.R.1
-
46
-
-
0027632444
-
On a hierarchical structure for fuzzy modeling and control
-
Yager RR. (1993). On a hierarchical structure for fuzzy modeling and control. IEEE Trans Syst Man Cybern 23(4):1189-1197
-
(1993)
IEEE Trans Syst Man Cybern
, vol.23
, Issue.4
, pp. 1189-1197
-
-
Yager, R.R.1
-
47
-
-
0026182752
-
On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input
-
Yager RR., Larsen HL. (1991). On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input. IEEE Trans Syst Man Cybern 21(4):790-801
-
(1991)
IEEE Trans Syst Man Cybern
, vol.21
, Issue.4
, pp. 790-801
-
-
Yager, R.R.1
Larsen, H.L.2
|