-
3
-
-
0037038205
-
-
J. Grunes, J. Zhu, E. A. Anderson, G. A. Somorjai, J. Phys. Chem. B 106, 11463 (2002).
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 11463
-
-
Grunes, J.1
Zhu, J.2
Anderson, E.A.3
Somorjai, G.A.4
-
6
-
-
0037774679
-
-
F. X. Redl, K. S. Cho, C. B. Murray, S. O'Brien, Nature 423, 968 (2003).
-
(2003)
Nature
, vol.423
, pp. 968
-
-
Redl, F.X.1
Cho, K.S.2
Murray, C.B.3
O'Brien, S.4
-
8
-
-
30144432584
-
-
E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 439, 55 (2006).
-
(2006)
Nature
, vol.439
, pp. 55
-
-
Shevchenko, E.V.1
Talapin, D.V.2
Kotov, N.A.3
O'Brien, S.4
Murray, C.B.5
-
9
-
-
24744460497
-
-
M. E. Leunissen et al., Nature 437, 235 (2005).
-
(2005)
Nature
, vol.437
, pp. 235
-
-
Leunissen, M.E.1
-
10
-
-
0037868902
-
-
B. A. Grzybowski, A. Winkleman, J. A. Wiles, Y. Brumer, G. M. Whitesides, Nat. Mater. 2, 241 (2003).
-
(2003)
Nat. Mater.
, vol.2
, pp. 241
-
-
Grzybowski, B.A.1
Winkleman, A.2
Wiles, J.A.3
Brumer, Y.4
Whitesides, G.M.5
-
12
-
-
33645962689
-
-
note
-
For crystals composed of Ag and Au nanoparticles, the lattice is isostructural with sphalerite ZnS (SG 216). For crystals made of only one type of metal cores (compare Fig. 5B), the lattice is best described as diamond (SG 227). To account for both of these possibilities we use "diamond-like" nomenclature in the text.
-
-
-
-
13
-
-
9444243184
-
-
D. Witt, R. Klajn, P. Barski, B. A. Grzybowski, Curr. Org. Chem. 8, 1763 (2004).
-
(2004)
Curr. Org. Chem.
, vol.8
, pp. 1763
-
-
Witt, D.1
Klajn, R.2
Barski, P.3
Grzybowski, B.A.4
-
15
-
-
33646003122
-
-
note
-
Supporting material is available on Science Online.
-
-
-
-
16
-
-
0034697830
-
-
C. V. K. Sharma, G. A. Broker, G. J. Szulczewski, R. D. Rogers, Chem. Commun. 2000, 1023 (2000).
-
(2000)
Chem. Commun.
, vol.2000
, pp. 1023
-
-
Sharma, C.V.K.1
Broker, G.A.2
Szulczewski, G.J.3
Rogers, R.D.4
-
17
-
-
33645960305
-
-
note
-
After the evaporation of the "good" solvent, the NP crystals constituted only ∼0.01% v/v of the remaining solution, so crystallization cannot be attributed to confinement effects that might have been operative had all liquid been evaporated.
-
-
-
-
19
-
-
33645977361
-
-
note
-
-1 ∼ 2.7 nm. We emphasize that this number can only be treated as an estimate, because with NPs several nanometers in diameter, we are at the limit of applicability of the DLVO mean-field approach. At the same time, our approximation is qualitatively correct as verified by recent numerical Monte Carlo simulations of pairs of nanometer-sized charged particles (20).
-
-
-
-
20
-
-
0000240794
-
-
J. Z. Wu, D. Bratko, H. W. Blanch, J. M. Prausnitz, J. Chem. Phys. 111, 7084 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 7084
-
-
Wu, J.Z.1
Bratko, D.2
Blanch, H.W.3
Prausnitz, J.M.4
-
23
-
-
32644474586
-
-
A.-P. Hynninen, M. E. Leunissen, A. van Blaaderen, M. Dijkstra, Phys. Rev. Lett. 96, 018303 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 018303
-
-
Hynninen, A.-P.1
Leunissen, M.E.2
Van Blaaderen, A.3
Dijkstra, M.4
-
25
-
-
33646002833
-
-
note
-
2 group (26, 27). TEM images of the charged NPs that we used reveal that the SAMs are "rigid" (i.e., their thicknesses between aggregated NPs are the same as those on isolated ones) and that no interpenetration takes place. This observation is easily rationalized by noting that possible interpenetration of the alkyl chains would have to take place at the expense of favorable electrostatic interactions between oppositely charged head groups. Overall, the van der Waals forces in our system can be neglected even if two NPs touch each other. At such small separations, the interactions are dominated by attractive electrostatic forces. Finally, we note that entropic forces due to SAM squeezing (28) are also negligible, because the SAMs are not "compressible."
-
-
-
-
29
-
-
33645973100
-
-
note
-
Results of recent molecular dynamics simulations (21) indicate that mean-field screening concepts can be extended to the nanoscale and can be used to approximate electrostatic forces acting between nanoparticles screened by counterions comparable in size (within one order of magnitude) and present in small quantities (a few layers). Although quantitative analogies could thus be justified, we restrict our discussion to qualitative arguments that are sufficient to explain experimental observations.
-
-
-
-
30
-
-
0035979228
-
-
V. Tohver, J. E. Smay, A. Braem, P. V. Braun, J. A. Lewis, Proc. Natl. Acad. Sci. U.S.A. 98, 8950 (2001).
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 8950
-
-
Tohver, V.1
Smay, J.E.2
Braem, A.3
Braun, P.V.4
Lewis, J.A.5
-
32
-
-
0001585605
-
-
R. C. Ball, D. A. Weitz, T. A. Witten, F. Leyvraz, Phys. Rev. Lett. 58, 274 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 274
-
-
Ball, R.C.1
Weitz, D.A.2
Witten, T.A.3
Leyvraz, F.4
-
33
-
-
0013196141
-
-
P. C. Ohara, D. V. Leff, J. R. Heath, W. M. Gelbart, Phys. Rev. Lett. 75, 3466 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3466
-
-
Ohara, P.C.1
Leff, D.V.2
Heath, J.R.3
Gelbart, W.M.4
-
35
-
-
84956082901
-
-
S. Sanyal, N. Easwar, S. Ramaswamy, A. K. Sood, Europhys. Lett 18, 107 (1992).
-
(1992)
Europhys. Lett
, vol.18
, pp. 107
-
-
Sanyal, S.1
Easwar, N.2
Ramaswamy, S.3
Sood, A.K.4
-
38
-
-
33645998934
-
-
Z. Zhang, A. S. Keys, T. Chen, S. C. Glotzer, Langmuir 21, 8383 (2005).
-
(2005)
Langmuir
, vol.21
, pp. 8383
-
-
Zhang, Z.1
Keys, A.S.2
Chen, T.3
Glotzer, S.C.4
-
39
-
-
0037070582
-
-
S. Stoeva, K. J. Klabunde, C. M. Sorensen, I. Dragieva, J. Am. Chem. Soc. 124, 2305 (2002).
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 2305
-
-
Stoeva, S.1
Klabunde, K.J.2
Sorensen, C.M.3
Dragieva, I.4
-
40
-
-
33645992629
-
-
note
-
We thank J.-G. Zheng and M. Kowski for helpful discussions. B.A.G. gratefully acknowledges financial support from the Camille and Henry Dreyfus New Faculty Awards Program, NSF (grant 0503673), and the American Chemical Society Petroleum Research Fund (Award 42953-ACS). K.J.M.B. was supported by the NSF Graduate Fellowship.
-
-
-
|