메뉴 건너뛰기




Volumn 3631 LNCS, Issue , 2005, Pages 153-166

VA-files vs. R*-trees in distance join queries

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; DATA PROCESSING; DATABASE SYSTEMS; INDEXING (OF INFORMATION); OBJECT ORIENTED PROGRAMMING;

EID: 33645961547     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11547686_12     Document Type: Conference Paper
Times cited : (6)

References (21)
  • 1
    • 0025447750 scopus 로고
    • The R*-trce: An efficient and robust access method for points and rectangles
    • Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: "The R*-trce: an Efficient and Robust Access Method for Points and Rectangles", Proc. SIGMOD Conf. (1990) 322-331
    • (1990) Proc. SIGMOD Conf. , pp. 322-331
    • Beckmann, N.1    Kriegel, H.P.2    Schneider, R.3    Seeger, B.4
  • 2
    • 0033897520 scopus 로고    scopus 로고
    • Independent quantization: An index compression technique for high-dimensional data spaces
    • Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H. P., Sander, J.: "Independent Quantization: an Index Compression Technique for High-Dimensional Data Spaces", Proc. ICDE Conf. (2000) 577-588
    • (2000) Proc. ICDE Conf. , pp. 577-588
    • Berchtold, S.1    Böhm, C.2    Jagadish, H.3    Kriegel, H.P.4    Sander, J.5
  • 4
    • 0035007849 scopus 로고    scopus 로고
    • A cost model and index architecture for the similarity join
    • Böhm, C., Kriegel, H. P.: "A Cost Model and Index Architecture for the Similarity Join", Proc. ICDE Conf. (2001) 411-420
    • (2001) Proc. ICDE Conf. , pp. 411-420
    • Böhm, C.1    Kriegel, H.P.2
  • 5
    • 0036613685 scopus 로고    scopus 로고
    • The GC-trce: A high-dimensional index structure for similarity search in image databases
    • Cha, G. H., Chung, C. W.: "The GC-trce: a High-Dimensional Index Structure for Similarity Search in Image Databases", Transactions on Multimedia, Vol. 4, No. 2 (2002) 235-247
    • (2002) Transactions on Multimedia , vol.4 , Issue.2 , pp. 235-247
    • Cha, G.H.1    Chung, C.W.2
  • 6
    • 0036501928 scopus 로고    scopus 로고
    • An efficient indexing method for nearest neighbor searches in high-dimensional image databases
    • Cha, G. H., Zhu, X., Petkovic, D, Chung, C.W.: "An Efficient Indexing Method for Nearest Neighbor Searches in High-Dimensional Image Databases", Transactions on Multimedia, Vol. 4, No. 1 (2002) 76-87
    • (2002) Transactions on Multimedia , vol.4 , Issue.1 , pp. 76-87
    • Cha, G.H.1    Zhu, X.2    Petkovic, D.3    Chung, C.W.4
  • 8
    • 15744376032 scopus 로고    scopus 로고
    • On approximate algorithms for distance-based queries using R-trees
    • Corral, A., Vassilakopoulos, M.: "On Approximate Algorithms for Distance-Based Queries using R-trees", The Computer Journal, Vol. 48, No. 2 (2005) 220-238
    • (2005) The Computer Journal , vol.48 , Issue.2 , pp. 220-238
    • Corral, A.1    Vassilakopoulos, M.2
  • 9
    • 34047230167 scopus 로고    scopus 로고
    • Adaptive quantization of the high-dimensional data for efficient KNN processing
    • Cui, B., Hu, J., Shen, H., Yu, C.: "Adaptive Quantization of the High-Dimensional Data for Efficient KNN Processing", Proc. DASFAA Conf. (2004) 302-313
    • (2004) Proc. DASFAA Conf. , pp. 302-313
    • Cui, B.1    Hu, J.2    Shen, H.3    Yu, C.4
  • 10
    • 0035789604 scopus 로고    scopus 로고
    • GESS: A scalable similarity-join algorithm for mining large data sets in high dimensional spaces
    • Dittrich, J. P., Seeger, B.: "GESS: a Scalable Similarity-Join Algorithm for Mining Large Data Sets in High Dimensional Spaces", Proc. SIGKDD Conf. (2001) 47-56
    • (2001) Proc. SIGKDD Conf. , pp. 47-56
    • Dittrich, J.P.1    Seeger, B.2
  • 12
    • 85139617617 scopus 로고    scopus 로고
    • Vector approximation based indexing for non-uniform high dimensional data sets
    • Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A. E.: "Vector Approximation Based Indexing for Non-Uniform High Dimensional Data Sets", Proc. CIKM Conf. (2000) 202-209
    • (2000) Proc. CIKM Conf. , pp. 202-209
    • Ferhatosmanoglu, H.1    Tuncel, E.2    Agrawal, D.3    Abbadi, A.E.4
  • 13
    • 0021615874 scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • Guttman, A.: "R-trees: a Dynamic Index Structure for Spatial Searching", Proc. SIGMOD Conf. (1984) 47-57
    • (1984) Proc. SIGMOD Conf. , pp. 47-57
    • Guttman, A.1
  • 14
    • 0012906001 scopus 로고    scopus 로고
    • High dimensional similarity joins: Algorithms and performance evaluation
    • Koudas, N., Sevcik, K. C.: "High Dimensional Similarity Joins: Algorithms and Performance Evaluation", Transactions on Knowledge and Data Engineering, Vol. 12, No. 1 (2000) 3-18
    • (2000) Transactions on Knowledge and Data Engineering , vol.12 , Issue.1 , pp. 3-18
    • Koudas, N.1    Sevcik, K.C.2
  • 17
    • 0344775426 scopus 로고    scopus 로고
    • The A-tree: An index structure for high-dimensional spaces using relative approximation
    • Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: "The A-tree: an Index Structure for High-Dimensional Spaces using Relative Approximation", Proc. VLDB Conf. (2000) 516-526
    • (2000) Proc. VLDB Conf. , pp. 516-526
    • Sakurai, Y.1    Yoshikawa, M.2    Uemura, S.3    Kojima, H.4
  • 19
    • 84937400231 scopus 로고    scopus 로고
    • Trading quality for time with nearest neighbor search
    • Weber, R., Böhm, K.: "Trading Quality for Time with Nearest Neighbor Search". Proc. EDBT Conf. (2000) 21-35
    • (2000) Proc. EDBT Conf. , pp. 21-35
    • Weber, R.1    Böhm, K.2
  • 20
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • Weber, R., Schek, H. J., Blott, S.: "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces", Proc. VLDB Conf. (1998) 194-205
    • (1998) Proc. VLDB Conf. , pp. 194-205
    • Weber, R.1    Schek, H.J.2    Blott, S.3
  • 21
    • 33645978198 scopus 로고    scopus 로고
    • Web site: http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures. html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.