메뉴 건너뛰기




Volumn 19, Issue 4-5, 2005, Pages 603-632

Autonomous development of basic behaviors of an agent;Développement autonome des comportements de base d'un agent

Author keywords

Markov Decision Problems; Multiple Motivations; Reinforcement Learning

Indexed keywords

DECISION THEORY; LEARNING SYSTEMS; MARKOV PROCESSES;

EID: 33645896149     PISSN: 0992499X     EISSN: None     Source Type: Journal    
DOI: 10.3166/ria.19.603-632     Document Type: Conference Paper
Times cited : (2)

References (43)
  • 10
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Dietterich T., «Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition », Journal of Artificial Intelligence Research, vol. 13, p. 227-303, 2000.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 227-303
    • Dietterich, T.1
  • 14
    • 84972539429 scopus 로고
    • Combining probability distributions: A critique and an annotated bibliography
    • February
    • Genest C, Zidek J., «Combining Probability Distributions : A Critique and an Annotated Bibliography », Statistical Science, vol. 1, no 1, p. 114-135, February, 1986.
    • (1986) Statistical Science , vol.1 , Issue.1 , pp. 114-135
    • Genest, C.1    Zidek, J.2
  • 19
    • 0000439891 scopus 로고
    • On the convergence of stochastic iterative dynamic programming algorithms
    • Jaakkola T., Jordan M., Singh S., «On the Convergence of Stochastic Iterative Dynamic Programming Algorithms », Neural Computation, vol. 6, no 6, p. 1186-1201, 1994.
    • (1994) Neural Computation , vol.6 , Issue.6 , pp. 1186-1201
    • Jaakkola, T.1    Jordan, M.2    Singh, S.3
  • 24
    • 0036832951 scopus 로고    scopus 로고
    • A sparse sampling algorithm for near-optimal planning in large Markov decision processes
    • Kearns M., Mansour Y., Ng A., «A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes », Machine Learning, vol. 49, p. 193-208, 2002.
    • (2002) Machine Learning , vol.49 , pp. 193-208
    • Kearns, M.1    Mansour, Y.2    Ng, A.3
  • 25
    • 0000123778 scopus 로고
    • Self-improving reactive agent based on reinforcement learning, planning and teaching
    • Lin. L.-J., «Self-improving reactive agent based on reinforcement learning, planning and teaching. », Machine Learning, vol. 8, p. 293-321, 1992.
    • (1992) Machine Learning , vol.8 , pp. 293-321
    • Lin, L.-J.1
  • 29
    • 0026880130 scopus 로고
    • Automatic programming of behavior-based robots using reinforcement learning
    • June
    • Mahadevan S., Cornell J., «Automatic Programming of Behavior-based Robots using Reinforcement Learning », Artificial Intelligence, vol. 55, no 2-3, p. 311-365, June, 1992.
    • (1992) Artificial Intelligence , vol.55 , Issue.2-3 , pp. 311-365
    • Mahadevan, S.1    Cornell, J.2
  • 37
    • 4544279348 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning: A critical survey
    • Stanford
    • Shoham Y., Powers R., Grenager T., Multi-agent reinforcement learning : a critical survey. Technical report, Stanford, 2003.
    • (2003) Technical Report
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 39
    • 0008321896 scopus 로고    scopus 로고
    • Reinforcement learning: An introduction
    • MIT Press, Cambridge, MA
    • Sutton R., Barto G., Reinforcement Learning : an introduction, Bradford Book, MIT Press, Cambridge, MA, 1998.
    • (1998) Bradford Book
    • Sutton, R.1    Barto, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.