-
2
-
-
51849177370
-
Likelihood and bayes procedure
-
J. M. Bernald, Valencia, Italy, University Press
-
H. Akaike. Likelihood and bayes procedure. In J. M. Bernald, Bayesian statistics, pages 143-166, Valencia, Italy, 1980. University Press.
-
(1980)
Bayesian Statistics
, pp. 143-166
-
-
Akaike, H.1
-
3
-
-
33645797360
-
The generalization error of reduced rank regression in bayesian estimation
-
Parma, Italy
-
M. Aoyagi and S. Watanabe. The generalization error of reduced rank regression in bayesian estimation. In Proc. of ISITA, pages 1068-1073, Parma, Italy, 2004.
-
(2004)
Proc. of ISITA
, pp. 1068-1073
-
-
Aoyagi, M.1
Watanabe, S.2
-
4
-
-
0003278032
-
Inferring parameters and structure of latent variable models by variational bayes
-
H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In Proc. of UAI, 1999.
-
Proc. of UAI, 1999
-
-
Attias, H.1
-
6
-
-
84949161149
-
Stein's estimation rule and its competitors-an empirical bayes approach
-
B. Efron and C. Morris. Stein's estimation rule and its competitors-an empirical bayes approach. J. of Am. Stat. Assoc., 68:117-130, 1973.
-
(1973)
J. of Am. Stat. Assoc.
, vol.68
, pp. 117-130
-
-
Efron, B.1
Morris, C.2
-
7
-
-
84957085126
-
Generalization error of linear neural networks in unidentifiable cases
-
Springer
-
K. Fukumizu. Generalization error of linear neural networks in unidentifiable cases. In Proc. of ALT, pages 51-62. Springer, 1999.
-
(1999)
Proc. of ALT
, pp. 51-62
-
-
Fukumizu, K.1
-
9
-
-
36148985015
-
Keeping neural networks simple by minimizing the description length of the weights
-
G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description length of the weights. In Proc. of COLT, 1993.
-
Proc. of COLT, 1993
-
-
Hinton, G.E.1
Van Camp, D.2
-
11
-
-
80052029170
-
Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models)
-
R. E. Kass and D. Steffey. Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). J. of the Am. Stat. Assoc., 84:717-726, 1989.
-
(1989)
J. of the Am. Stat. Assoc.
, vol.84
, pp. 717-726
-
-
Kass, R.E.1
Steffey, D.2
-
12
-
-
0038765941
-
Developments in probabilistic modeling with neural networks-ensemble learning
-
D. J. C. MacKay. Developments in probabilistic modeling with neural networks-ensemble learning. In Proc. of the 3rd Ann. Symp. on Neural Networks, pages 191-198, 1995.
-
(1995)
Proc. of the 3rd Ann. Symp. on Neural Networks
, pp. 191-198
-
-
MacKay, D.J.C.1
-
13
-
-
33645781604
-
Generalization performance of subspace bayes approach in linear neural networks
-
Submitted to
-
S. Nakajima and S. Watanabe. Generalization performance of subspace bayes approach in linear neural networks. Submitted to IEICE Trans., 2005.
-
(2005)
IEICE Trans.
-
-
Nakajima, S.1
Watanabe, S.2
-
14
-
-
84880758259
-
Variational bayes solution of linear neural networks and its generalization error and training error
-
Submitted to
-
S. Nakajima and S. Watanabe. Variational bayes solution of linear neural networks and its generalization error and training error. Submitted to ICML, 2005.
-
(2005)
ICML
-
-
Nakajima, S.1
Watanabe, S.2
-
16
-
-
0042879444
-
Learning coefficients of layered models when the true distribution mismatches the singularities
-
DOI 10.1162/089976603765202640
-
S. Watanabe and S. Amari. Learning coefficients of layered models when the true distribution mismatches the singularities. Neural Computation, 15:1013-1033, 2003. (Pubitemid 37049800)
-
(2003)
Neural Computation
, vol.15
, Issue.5
, pp. 1013-1033
-
-
Watanabe, S.1
Amari, S.-I.2
-
17
-
-
0003937573
-
Algebraic information geometry for learning machines with singularities
-
S. Watanabe. Algebraic information geometry for learning machines with singularities. Advances in NIPS, 13:329-336, 2001.
-
(2001)
Advances in NIPS
, vol.13
, pp. 329-336
-
-
Watanabe, S.1
-
18
-
-
0002247902
-
The strong limits of random matrix spectra for sample matrices of independent elements
-
K.W.Watcher. The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Prob., 6:1-18, 1978.
-
(1978)
Ann. Prob.
, vol.6
, pp. 1-18
-
-
Watcher, K.W.1
-
19
-
-
0742324924
-
Singularities in mixture models and upper bounds of stochastic complexity
-
DOI 10.1016/S0893-6080(03)00005-4
-
K. Yamazaki and S. Watanabe. Singularities in mixture models and upper bounds of stochastic complexity. Neural Networks, 16(7):1029-1038, 2003. (Pubitemid 38147281)
-
(2003)
Neural Networks
, vol.16
, Issue.7
, pp. 1029-1038
-
-
Yamazaki, K.1
Watanabe, S.2
|