메뉴 건너뛰기




Volumn , Issue , 2005, Pages 804-810

Generalization error of linear neural networks in an empirical bayes approach

Author keywords

[No Author keywords available]

Indexed keywords

BAYES ESTIMATION; COMPUTATIONAL COSTS; EMPIRICAL BAYES APPROACH; GENERALIZATION ERROR; GENERALIZATION PERFORMANCE; LINEAR NEURAL NETWORK; POSTERIOR DISTRIBUTIONS; SHRINKAGE ESTIMATIONS;

EID: 33645770499     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (19)
  • 2
    • 51849177370 scopus 로고
    • Likelihood and bayes procedure
    • J. M. Bernald, Valencia, Italy, University Press
    • H. Akaike. Likelihood and bayes procedure. In J. M. Bernald, Bayesian statistics, pages 143-166, Valencia, Italy, 1980. University Press.
    • (1980) Bayesian Statistics , pp. 143-166
    • Akaike, H.1
  • 3
    • 33645797360 scopus 로고    scopus 로고
    • The generalization error of reduced rank regression in bayesian estimation
    • Parma, Italy
    • M. Aoyagi and S. Watanabe. The generalization error of reduced rank regression in bayesian estimation. In Proc. of ISITA, pages 1068-1073, Parma, Italy, 2004.
    • (2004) Proc. of ISITA , pp. 1068-1073
    • Aoyagi, M.1    Watanabe, S.2
  • 4
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational bayes
    • H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In Proc. of UAI, 1999.
    • Proc. of UAI, 1999
    • Attias, H.1
  • 5
  • 6
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors-an empirical bayes approach
    • B. Efron and C. Morris. Stein's estimation rule and its competitors-an empirical bayes approach. J. of Am. Stat. Assoc., 68:117-130, 1973.
    • (1973) J. of Am. Stat. Assoc. , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 7
    • 84957085126 scopus 로고    scopus 로고
    • Generalization error of linear neural networks in unidentifiable cases
    • Springer
    • K. Fukumizu. Generalization error of linear neural networks in unidentifiable cases. In Proc. of ALT, pages 51-62. Springer, 1999.
    • (1999) Proc. of ALT , pp. 51-62
    • Fukumizu, K.1
  • 9
    • 36148985015 scopus 로고    scopus 로고
    • Keeping neural networks simple by minimizing the description length of the weights
    • G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description length of the weights. In Proc. of COLT, 1993.
    • Proc. of COLT, 1993
    • Hinton, G.E.1    Van Camp, D.2
  • 11
    • 80052029170 scopus 로고
    • Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models)
    • R. E. Kass and D. Steffey. Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). J. of the Am. Stat. Assoc., 84:717-726, 1989.
    • (1989) J. of the Am. Stat. Assoc. , vol.84 , pp. 717-726
    • Kass, R.E.1    Steffey, D.2
  • 12
    • 0038765941 scopus 로고
    • Developments in probabilistic modeling with neural networks-ensemble learning
    • D. J. C. MacKay. Developments in probabilistic modeling with neural networks-ensemble learning. In Proc. of the 3rd Ann. Symp. on Neural Networks, pages 191-198, 1995.
    • (1995) Proc. of the 3rd Ann. Symp. on Neural Networks , pp. 191-198
    • MacKay, D.J.C.1
  • 13
    • 33645781604 scopus 로고    scopus 로고
    • Generalization performance of subspace bayes approach in linear neural networks
    • Submitted to
    • S. Nakajima and S. Watanabe. Generalization performance of subspace bayes approach in linear neural networks. Submitted to IEICE Trans., 2005.
    • (2005) IEICE Trans.
    • Nakajima, S.1    Watanabe, S.2
  • 14
    • 84880758259 scopus 로고    scopus 로고
    • Variational bayes solution of linear neural networks and its generalization error and training error
    • Submitted to
    • S. Nakajima and S. Watanabe. Variational bayes solution of linear neural networks and its generalization error and training error. Submitted to ICML, 2005.
    • (2005) ICML
    • Nakajima, S.1    Watanabe, S.2
  • 16
    • 0042879444 scopus 로고    scopus 로고
    • Learning coefficients of layered models when the true distribution mismatches the singularities
    • DOI 10.1162/089976603765202640
    • S. Watanabe and S. Amari. Learning coefficients of layered models when the true distribution mismatches the singularities. Neural Computation, 15:1013-1033, 2003. (Pubitemid 37049800)
    • (2003) Neural Computation , vol.15 , Issue.5 , pp. 1013-1033
    • Watanabe, S.1    Amari, S.-I.2
  • 17
    • 0003937573 scopus 로고    scopus 로고
    • Algebraic information geometry for learning machines with singularities
    • S. Watanabe. Algebraic information geometry for learning machines with singularities. Advances in NIPS, 13:329-336, 2001.
    • (2001) Advances in NIPS , vol.13 , pp. 329-336
    • Watanabe, S.1
  • 18
    • 0002247902 scopus 로고
    • The strong limits of random matrix spectra for sample matrices of independent elements
    • K.W.Watcher. The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Prob., 6:1-18, 1978.
    • (1978) Ann. Prob. , vol.6 , pp. 1-18
    • Watcher, K.W.1
  • 19
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • DOI 10.1016/S0893-6080(03)00005-4
    • K. Yamazaki and S. Watanabe. Singularities in mixture models and upper bounds of stochastic complexity. Neural Networks, 16(7):1029-1038, 2003. (Pubitemid 38147281)
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1029-1038
    • Yamazaki, K.1    Watanabe, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.