메뉴 건너뛰기




Volumn 22, Issue 2, 2006, Pages 249-265

Forecasting with genetically programmed polynomial neural networks

Author keywords

Genetic programming; Nonlinear models; Statistical learning algorithms; Tree structured polynomial neural network models

Indexed keywords


EID: 33645736148     PISSN: 01692070     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijforecast.2005.05.002     Document Type: Article
Times cited : (28)

References (36)
  • 1
    • 0042824912 scopus 로고    scopus 로고
    • Using genetic algorithms to find technical trading rules
    • Allen F., and Karjalainen R. Using genetic algorithms to find technical trading rules. Journal of Financial Economics 51 (1999) 245-271
    • (1999) Journal of Financial Economics , vol.51 , pp. 245-271
    • Allen, F.1    Karjalainen, R.2
  • 4
    • 85071343664 scopus 로고    scopus 로고
    • A test for independence based on the correlation dimension
    • Brock W.A., Dechert W., and Scheinkman J. A test for independence based on the correlation dimension. Econometric Reviews 15 (1996) 197-235
    • (1996) Econometric Reviews , vol.15 , pp. 197-235
    • Brock, W.A.1    Dechert, W.2    Scheinkman, J.3
  • 6
    • 0034138664 scopus 로고    scopus 로고
    • Very short-term load forecasting using artificial neural networks
    • Charytoniuk W., and Chen M. Very short-term load forecasting using artificial neural networks. IEEE Transactions on Power Systems 15 (2000) 263-268
    • (2000) IEEE Transactions on Power Systems , vol.15 , pp. 263-268
    • Charytoniuk, W.1    Chen, M.2
  • 7
    • 4243386910 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks and genetic programming: A comparative study based on financial data
    • Smith G.D., Steele N.C., and Albrecht R.F. (Eds), Springer-Verlag, Wien
    • Chen S.H., and Ni C.C. Evolutionary artificial neural networks and genetic programming: A comparative study based on financial data. In: Smith G.D., Steele N.C., and Albrecht R.F. (Eds). Artificial neural networks and genetic algorithms (1998), Springer-Verlag, Wien 397-400
    • (1998) Artificial neural networks and genetic algorithms , pp. 397-400
    • Chen, S.H.1    Ni, C.C.2
  • 8
    • 0002715074 scopus 로고    scopus 로고
    • Forecasting the short term demand for electricity-Do neural networks stand a better chance?
    • Darbellay G.A., and Slama M. Forecasting the short term demand for electricity-Do neural networks stand a better chance?. International Journal of Forecasting 16 (2000) 71-83
    • (2000) International Journal of Forecasting , vol.16 , pp. 71-83
    • Darbellay, G.A.1    Slama, M.2
  • 9
    • 0004183211 scopus 로고    scopus 로고
    • On the robustness of nonlinearity tests to moment condition failure
    • de Lima P.J.F. On the robustness of nonlinearity tests to moment condition failure. Journal of Econometrics 76 (1997) 251-280
    • (1997) Journal of Econometrics , vol.76 , pp. 251-280
    • de Lima, P.J.F.1
  • 10
    • 0012988434 scopus 로고    scopus 로고
    • Induction and polynomial networks
    • Fraser M.D. (Ed), Intellect Books, Exeter, UK
    • Elder IV J.F., and Brown D. Induction and polynomial networks. In: Fraser M.D. (Ed). Network models for control and processing (2000), Intellect Books, Exeter, UK 143-198
    • (2000) Network models for control and processing , pp. 143-198
    • Elder IV, J.F.1    Brown, D.2
  • 11
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway J., and Chatfield C. Time series forecasting with neural networks: A comparative study using the airline data. Applied Statistics 47 (1998) 231-250
    • (1998) Applied Statistics , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 14
    • 0029343601 scopus 로고    scopus 로고
    • A framework for improved training of Sigma-Pi networks
    • Heywood J., and Noakes P. A framework for improved training of Sigma-Pi networks. IEEE Transactions on Neural Networks 6 (1996) 893-903
    • (1996) IEEE Transactions on Neural Networks , vol.6 , pp. 893-903
    • Heywood, J.1    Noakes, P.2
  • 15
    • 21644478686 scopus 로고    scopus 로고
    • Large neural networks for electricity load forecasting: Are they overfitted?
    • Hippert H.S., Dunn D.W., and Souza R.C. Large neural networks for electricity load forecasting: Are they overfitted?. International Journal of Forecasting 21 3 (2004) 425-434
    • (2004) International Journal of Forecasting , vol.21 , Issue.3 , pp. 425-434
    • Hippert, H.S.1    Dunn, D.W.2    Souza, R.C.3
  • 18
    • 0346750898 scopus 로고    scopus 로고
    • Genetic programming prediction of stock prices
    • Kaboudan M. Genetic programming prediction of stock prices. Computational Economics 6 (2000) 207-236
    • (2000) Computational Economics , vol.6 , pp. 207-236
    • Kaboudan, M.1
  • 19
    • 33645743221 scopus 로고    scopus 로고
    • Very fast and correctly sized estimation of the BDS statistic
    • (http://papers.ssrn.com/sol3/papers.cfm?abstract/id=151669)
    • Kanzler L. Very fast and correctly sized estimation of the BDS statistic. Social Science Research Network (1999). http://papers.ssrn.com/sol3/papers.cfm%3Fabstract%5Cid%3D151669 (http://papers.ssrn.com/sol3/papers.cfm?abstract/id=151669)
    • (1999) Social Science Research Network
    • Kanzler, L.1
  • 21
    • 33645751771 scopus 로고    scopus 로고
    • LeBaron, B. (2001). "BDSTEST.C" source code (http://people.brandeis.edu/126blebaron/id33.htm).
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Computation 4 (1992) 415-447
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Computation 4 (1992) 448-472
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 27
    • 33645749725 scopus 로고    scopus 로고
    • Nikolaev, N., & de Menezes, L. M. (2003). Forecasting with genetically programmed polynomial networks: An evaluation exercise. Technical Report, Department of Computing, Goldsmiths College, University of London.
  • 28
    • 33751560009 scopus 로고
    • Regularisation in the selection of RBF centres
    • Orr M.J.C. Regularisation in the selection of RBF centres. Neural Computation 7 (1995) 606-623
    • (1995) Neural Computation , vol.7 , pp. 606-623
    • Orr, M.J.C.1
  • 30
    • 10944272201 scopus 로고    scopus 로고
    • Neural networks for time-series forecasting
    • Armstrong J.S. (Ed), Kluwer Academic Press, Norwell
    • Remus W., and O'Connor M. Neural networks for time-series forecasting. In: Armstrong J.S. (Ed). Principles of forecasting (2001), Kluwer Academic Press, Norwell 245-258
    • (2001) Principles of forecasting , pp. 245-258
    • Remus, W.1    O'Connor, M.2
  • 33
    • 0036815902 scopus 로고    scopus 로고
    • A genetic algorithms approach to growth phase forecasting of wireless subscribers
    • Venkatesan R., and Kumar V. A genetic algorithms approach to growth phase forecasting of wireless subscribers. International Journal of Forecasting 18 (2002) 625-646
    • (2002) International Journal of Forecasting , vol.18 , pp. 625-646
    • Venkatesan, R.1    Kumar, V.2
  • 34
    • 0003241881 scopus 로고
    • Spline models for observational data
    • SIAM Press, Philadelphia, Pennsylvania
    • Wahba G. Spline models for observational data. CBMS-NSF Regional Conference Series vol. 59 (1990), SIAM Press, Philadelphia, Pennsylvania
    • (1990) CBMS-NSF Regional Conference Series , vol.59
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.