메뉴 건너뛰기




Volumn 29, Issue 6, 2005, Pages 429-435

Evaluation of an artificial neural network to predict urea nitrogen appearance for critically III multiple-trauma patients

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER SIMULATION; CRITICALLY ILL PATIENT; DIET RESTRICTION; EVALUATION; FEMALE; HIGH RISK PATIENT; HUMAN; MAJOR CLINICAL STUDY; MALE; MULTIPLE TRAUMA; MULTIVARIATE LOGISTIC REGRESSION ANALYSIS; NUTRITIONAL SUPPORT; PREDICTION; PRIORITY JOURNAL; REGRESSION ANALYSIS; SEPSIS; UREA NITROGEN BLOOD LEVEL; CRITICAL ILLNESS; EPIDEMIOLOGY; MULTIVARIATE ANALYSIS; PREDICTION AND FORECASTING; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY; URINE;

EID: 33645735163     PISSN: 01486071     EISSN: None     Source Type: Journal    
DOI: 10.1177/0148607105029006429     Document Type: Article
Times cited : (6)

References (39)
  • 1
    • 0017671967 scopus 로고
    • Changes in body balances of nitrogen and other key nutrients: Description and underlying mechanisms
    • Powanda MC. Changes in body balances of nitrogen and other key nutrients: description and underlying mechanisms. Am J Clin Nutr. 1977;30:1254-1268.
    • (1977) Am J Clin Nutr , vol.30 , pp. 1254-1268
    • Powanda, M.C.1
  • 3
    • 0023156453 scopus 로고
    • Whole body protein kinetics in severely septic patients: The response to glucose infusion and total parenteral nutrition
    • Shaw JH, Wildbore M, Wolfe RR. Whole body protein kinetics in severely septic patients: the response to glucose infusion and total parenteral nutrition. Ann Surg. 1987;205:288-294.
    • (1987) Ann Surg , vol.205 , pp. 288-294
    • Shaw, J.H.1    Wildbore, M.2    Wolfe, R.R.3
  • 4
    • 0023276231 scopus 로고
    • Energy and protein metabolism in sepsis and trauma
    • Shaw JH, Wolfe RR. Energy and protein metabolism in sepsis and trauma. Aust N Z J Surg. 1987;57:41-47.
    • (1987) Aust N Z J Surg , vol.57 , pp. 41-47
    • Shaw, J.H.1    Wolfe, R.R.2
  • 5
    • 0027381145 scopus 로고
    • Application of neural networks to pharmacodynamics
    • Veng-Pedersen P, Modi NB. Application of neural networks to pharmacodynamics. J Pharm Sci. 1993;82:918-926.
    • (1993) J Pharm Sci , vol.82 , pp. 918-926
    • Veng-Pedersen, P.1    Modi, N.B.2
  • 6
    • 0027288642 scopus 로고
    • Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu JV, Guerriere MR. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comput Biomed Res. 1993;26:220-229.
    • (1993) Comput Biomed Res , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, M.R.2
  • 7
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam VP, Graupe D. A neural-network-based detection of epilepsy. Neurol Res. 2004;26:55-60.
    • (2004) Neurol Res , vol.26 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 8
    • 16644395527 scopus 로고    scopus 로고
    • The use of artificial neural network analysis to improve the predictive accuracy of prostate biopsy in the Japanese population
    • Matsui Y, Utsunomiya N, Ichioka K, et al. The use of artificial neural network analysis to improve the predictive accuracy of prostate biopsy in the Japanese population. Jpn J Clin Oncol. 2004;34:602-607.
    • (2004) Jpn J Clin Oncol , vol.34 , pp. 602-607
    • Matsui, Y.1    Utsunomiya, N.2    Ichioka, K.3
  • 9
    • 11344280150 scopus 로고    scopus 로고
    • Neural network analysis for evaluating cancer risk in thyroid nodules with an indeterminate diagnosis at aspiration cytology: Identification of a low-risk subgroup
    • Ippolito AM, De Laurentiis M, La Rosa GL, et al. Neural network analysis for evaluating cancer risk in thyroid nodules with an indeterminate diagnosis at aspiration cytology: identification of a low-risk subgroup. Thyroid. 2004;14:1065-1071.
    • (2004) Thyroid , vol.14 , pp. 1065-1071
    • Ippolito, A.M.1    De Laurentiis, M.2    La Rosa, G.L.3
  • 10
    • 0035113477 scopus 로고    scopus 로고
    • Artificial intelligence applications in the intensive care unit
    • Hanson CW 3rd, Marshall BE. Artificial intelligence applications in the intensive care unit. Crit Care Med. 2001;29:427-435.
    • (2001) Crit Care Med , vol.29 , pp. 427-435
    • Hanson III, C.W.1    Marshall, B.E.2
  • 11
    • 0035116142 scopus 로고    scopus 로고
    • Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models
    • Clermont G, Angus DC, DiRusso SM, Griffin M, Linde-Zwirble WT. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Clin Care Med. 2001;29:291-296.
    • (2001) Clin Care Med , vol.29 , pp. 291-296
    • Clermont, G.1    Angus, D.C.2    DiRusso, S.M.3    Griffin, M.4    Linde-Zwirble, W.T.5
  • 12
    • 0141506860 scopus 로고    scopus 로고
    • Predicting mortality in patients with cirrhosis of liver with application of neural network technology
    • Banerjee R, Das A, Ghoshal UC, Sinha M. Predicting mortality in patients with cirrhosis of liver with application of neural network technology. J Gastroenterol Hepatol. 2003;18:1054-1060.
    • (2003) J Gastroenterol Hepatol , vol.18 , pp. 1054-1060
    • Banerjee, R.1    Das, A.2    Ghoshal, U.C.3    Sinha, M.4
  • 13
    • 10244259252 scopus 로고    scopus 로고
    • Forecasting model for the incidence of hepatitis a based on artificial neural network
    • Guan P, Huang DS, Zhou BS. Forecasting model for the incidence of hepatitis A based on artificial neural network. World J Gastroenterol. 2004;10:3579-3582.
    • (2004) World J Gastroenterol , vol.10 , pp. 3579-3582
    • Guan, P.1    Huang, D.S.2    Zhou, B.S.3
  • 14
    • 0030901141 scopus 로고    scopus 로고
    • Prediction of trauma mortality using a neural network
    • Izenberg SD, Williams MD, Luterman A. Prediction of trauma mortality using a neural network. Am Surg. 1997;63:275-281.
    • (1997) Am Surg , vol.63 , pp. 275-281
    • Izenberg, S.D.1    Williams, M.D.2    Luterman, A.3
  • 15
    • 0030764424 scopus 로고    scopus 로고
    • Prediction of nodal metastasis and prognosis in breast cancer: A neural model
    • Naguib RN, Adams AE, Home CH, et al. Prediction of nodal metastasis and prognosis in breast cancer: a neural model. Anticancer Res. 1997;17:2735-2741.
    • (1997) Anticancer Res , vol.17 , pp. 2735-2741
    • Naguib, R.N.1    Adams, A.E.2    Home, C.H.3
  • 16
    • 0041942665 scopus 로고    scopus 로고
    • Artificial neural network prediction of ventilator-induced lung edema formation
    • Hotchkiss JR, Broccard AF, Crooke PS. Artificial neural network prediction of ventilator-induced lung edema formation [Letter]. Crit Care Med. 2003;31:2250.
    • (2003) Crit Care Med , vol.31 , pp. 2250
    • Hotchkiss, J.R.1    Broccard, A.F.2    Crooke, P.S.3
  • 17
    • 0019305397 scopus 로고
    • Methods for assessing nutritional status of patients with renal failure
    • Blumenkrantz MJ, Kopple JD, Gutman RA, et al. Methods for assessing nutritional status of patients with renal failure. Am J Clin Nutr. 1980;33:1567-1585.
    • (1980) Am J Clin Nutr , vol.33 , pp. 1567-1585
    • Blumenkrantz, M.J.1    Kopple, J.D.2    Gutman, R.A.3
  • 18
    • 0023867596 scopus 로고
    • Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition
    • Grimble GK, West MF, Acuti AB, et al. Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition. JPEN J Parenter Enteral Nutr. 1988;12:100-106.
    • (1988) JPEN J Parenter Enteral Nutr , vol.12 , pp. 100-106
    • Grimble, G.K.1    West, M.F.2    Acuti, A.B.3
  • 19
    • 15244338561 scopus 로고    scopus 로고
    • Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple trauma patients receiving specialized nutrition support
    • Dickerson RN, Tidwell AC, Minard G, Croce MA, Brown RO. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple trauma patients receiving specialized nutrition support. Nutrition. 2005;21:332-338.
    • (2005) Nutrition , vol.21 , pp. 332-338
    • Dickerson, R.N.1    Tidwell, A.C.2    Minard, G.3    Croce, M.A.4    Brown, R.O.5
  • 20
    • 0004885790 scopus 로고    scopus 로고
    • Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: Time for a reevaluation
    • Abraham E, Matthay MA, Dinarello CA, et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med. 2000;28:232-235.
    • (2000) Crit Care Med , vol.28 , pp. 232-235
    • Abraham, E.1    Matthay, M.A.2    Dinarello, C.A.3
  • 22
    • 0015962447 scopus 로고
    • The Injury Severity Score: A method for describing patients with multiple injuries and evaluating emergency care
    • Baker SP, O'Neill B, Haddon W Jr, Long WB. The Injury Severity Score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187-196.
    • (1974) J Trauma , vol.14 , pp. 187-196
    • Baker, S.P.1    O'Neill, B.2    Haddon Jr., W.3    Long, W.B.4
  • 23
    • 0017051817 scopus 로고
    • The Injury Severity Score: An update
    • Baker SP, O'Neill B. The Injury Severity Score: an update. J Trauma. 1976;16:882-885.
    • (1976) J Trauma , vol.16 , pp. 882-885
    • Baker, S.P.1    O'Neill, B.2
  • 25
    • 0019604592 scopus 로고
    • Some suggestions for measuring predictive performance
    • Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9:503-512.
    • (1981) J Pharmacokinet Biopharm , vol.9 , pp. 503-512
    • Sheiner, L.B.1    Beal, S.L.2
  • 26
    • 0023263008 scopus 로고
    • Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients
    • Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma. 1987;27:262-266.
    • (1987) J Trauma , vol.27 , pp. 262-266
    • Streat, S.J.1    Beddoe, A.H.2    Hill, G.L.3
  • 27
    • 0024555897 scopus 로고
    • An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients: Studies in the basal state and the response to total parenteral nutrition
    • Shaw JH, Wolfe RR. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients: studies in the basal state and the response to total parenteral nutrition. Ann Surg. 1989;209:63-72.
    • (1989) Ann Surg , vol.209 , pp. 63-72
    • Shaw, J.H.1    Wolfe, R.R.2
  • 28
    • 0024591384 scopus 로고
    • Determinants of urea nitrogen production in sepsis: Muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids
    • Pittiruti M, Siegel JH, Sganga G, Coleman B, Wiles CE 3rd, Placko R. Determinants of urea nitrogen production in sepsis: muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids. Arch Surg. 1989;124:362-372.
    • (1989) Arch Surg , vol.124 , pp. 362-372
    • Pittiruti, M.1    Siegel, J.H.2    Sganga, G.3    Coleman, B.4    Wiles III, C.E.5    Placko, R.6
  • 29
    • 0027396025 scopus 로고
    • Introduction to backpropagation neural network computation
    • Erb RJ. Introduction to backpropagation neural network computation. Pharm Res. 1993;10:165-170.
    • (1993) Pharm Res , vol.10 , pp. 165-170
    • Erb, R.J.1
  • 30
    • 16844374019 scopus 로고    scopus 로고
    • Artificial neural network for prediction of lymph node metastases in gastric cancer: A phase II diagnostic study
    • Bollschweiler EH, Monig SP, Hensler K, Baldus SE, Maruyama K, Holscher AH. Artificial neural network for prediction of lymph node metastases in gastric cancer: a phase II diagnostic study. Ann Surg Oncol. 2004;11:506-511.
    • (2004) Ann Surg Oncol , vol.11 , pp. 506-511
    • Bollschweiler, E.H.1    Monig, S.P.2    Hensler, K.3    Baldus, S.E.4    Maruyama, K.5    Holscher, A.H.6
  • 31
    • 0142155223 scopus 로고    scopus 로고
    • Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model
    • Das A, Ben-Menachem T, Cooper GS, et al. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: internal and external validation of a predictive model. Lancet. 2003;362:1261-1266.
    • (2003) Lancet , vol.362 , pp. 1261-1266
    • Das, A.1    Ben-Menachem, T.2    Cooper, G.S.3
  • 32
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer. 2001;91:1615-1635.
    • (2001) Cancer , vol.91 , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 33
    • 17744367006 scopus 로고    scopus 로고
    • Neural network modeling and control of type 1 diabetes mellitus
    • El-Jabali AK. Neural network modeling and control of type 1 diabetes mellitus. Bioprocess Biosyst Eng. 2005;27:75-79.
    • (2005) Bioprocess Biosyst Eng , vol.27 , pp. 75-79
    • El-Jabali, A.K.1
  • 34
    • 0242300117 scopus 로고    scopus 로고
    • HIV lipodystrophy case definition using artificial neural network modelling
    • Ioannidis JP, Trikalinos TA, Law M, Carr A. HIV lipodystrophy case definition using artificial neural network modelling. Antivir Ther. 2003;8:435-441.
    • (2003) Antivir Ther , vol.8 , pp. 435-441
    • Ioannidis, J.P.1    Trikalinos, T.A.2    Law, M.3    Carr, A.4
  • 35
    • 0346848887 scopus 로고    scopus 로고
    • Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble
    • Santos-Garcia G, Varela G, Novoa N, Jimenez MF. Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble. Artif Intell Med. 2004;30:61-69.
    • (2004) Artif Intell Med , vol.30 , pp. 61-69
    • Santos-Garcia, G.1    Varela, G.2    Novoa, N.3    Jimenez, M.F.4
  • 36
    • 0033787803 scopus 로고    scopus 로고
    • Evaluating the frequency rate of hypomagnesemia in critically ill pediatric patients by using multiple regression analysis and a computer-based neural network
    • Verive MJ, Irazuzta J, Steinhart CM, Orlowski JP, Jaimovich DG. Evaluating the frequency rate of hypomagnesemia in critically ill pediatric patients by using multiple regression analysis and a computer-based neural network. Crit Care Med. 2000;28:3534-3539.
    • (2000) Crit Care Med , vol.28 , pp. 3534-3539
    • Verive, M.J.1    Irazuzta, J.2    Steinhart, C.M.3    Orlowski, J.P.4    Jaimovich, D.G.5
  • 37
    • 0242361771 scopus 로고    scopus 로고
    • Application of artificial neural network modelling to identify severely ill patients whose aminoglycoside concentrations are likely to fall below therapeutic concentrations
    • Yamamura S, Takehira R, Kawada K, et al. Application of artificial neural network modelling to identify severely ill patients whose aminoglycoside concentrations are likely to fall below therapeutic concentrations. J Clin Pharm Ther. 2003;28:425-432.
    • (2003) J Clin Pharm Ther , vol.28 , pp. 425-432
    • Yamamura, S.1    Takehira, R.2    Kawada, K.3
  • 38
    • 0033067772 scopus 로고    scopus 로고
    • Comparison of a neural network approach with five traditional methods for predicting creatinine clearance in patients with human immunodeficiency virus infection
    • Herman RA, Noormohamed S, Hirankarn S, et al. Comparison of a neural network approach with five traditional methods for predicting creatinine clearance in patients with human immunodeficiency virus infection. Pharmacotherapy. 1999;19:734-740.
    • (1999) Pharmacotherapy , vol.19 , pp. 734-740
    • Herman, R.A.1    Noormohamed, S.2    Hirankarn, S.3
  • 39
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches: Results from medical data sets
    • Sargent DJ. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer. 2001;91:1636-1642.
    • (2001) Cancer , vol.91 , pp. 1636-1642
    • Sargent, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.