-
1
-
-
0001093840
-
The entropy of a skew product of measure-preserving transformations
-
L. Abramov and V. Rokhlin, The entropy of a skew product of measure-preserving transformations, Amer. Math. Soc. Transl. Ser. 2 48:255-265 (1966).
-
(1966)
Amer. Math. Soc. Transl. Ser. 2
, vol.48
, pp. 255-265
-
-
Abramov, L.1
Rokhlin, V.2
-
2
-
-
33645685837
-
Spectrum and statistical properties of chaotic dynamics
-
Birkhauser
-
V. Baladi, Spectrum and statistical properties of chaotic dynamics, Proc. 3rd European Congress of Mathematics, (Birkhauser, 2001), pp. 203-224.
-
(2001)
Proc. 3rd European Congress of Mathematics
, pp. 203-224
-
-
Baladi, V.1
-
3
-
-
0002781393
-
d
-
d, Mh. Math. 124:97-118 (1997).
-
(1997)
Mh. Math.
, vol.124
, pp. 97-118
-
-
Buzzi, J.1
-
4
-
-
0035641784
-
Piecewise isometries have zero topological entropy
-
J. Buzzi, Piecewise isometries have zero topological entropy, Ergod. Th. & Dynam. Sys. 21:1371-1377 (2001).
-
(2001)
Ergod. Th. & Dynam. Sys.
, vol.21
, pp. 1371-1377
-
-
Buzzi, J.1
-
5
-
-
5844290410
-
Self-organized criticality: Anexplenationof 1/f-noise
-
P. Bak, C. Tang, andK. Wiesenfeld, Self-organized criticality: Anexplenationof 1/f-noise, Phys. Rev. Lett. 59(4):381-384 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, Issue.4
, pp. 381-384
-
-
Bak, P.1
Tang, C.2
Wiesenfeld, K.3
-
6
-
-
15744401041
-
Self-organized criticality
-
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38(1):364-374 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, Issue.1
, pp. 364-374
-
-
Bak, P.1
Tang, C.2
Wiesenfeld, K.3
-
7
-
-
33748545538
-
The abramov-rokhlin formula, ergodic theory and related topics, III (Gustrow, 1990)
-
Springer, Berlin
-
T. Bogenschütz and H. Crauel, The Abramov-Rokhlin Formula, Ergodic theory and related topics, III (Gustrow, 1990), 32-35, Lecture Notes in Math. 1514, (Springer, Berlin, 1992).
-
(1992)
Lecture Notes in Math.
, vol.1514
, pp. 32-35
-
-
Bogenschütz, T.1
Crauel, H.2
-
8
-
-
84942990301
-
Entropy for group endomorphisms and homogeneous spaces
-
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. A.M.S. 153:401-414 (1971).
-
(1971)
Trans. A.M.S.
, vol.153
, pp. 401-414
-
-
Bowen, R.1
-
9
-
-
0003796058
-
Ergodic theory and topological dynamics
-
Academic Press [Harcourt Brace Jovanovich Publ.], New York-London
-
J. R. Brown, Ergodic theory and topological dynamics, Pure and Applied Mathematics, 70, (Academic Press [Harcourt Brace Jovanovich Publ.], New York-London, 1976).
-
(1976)
Pure and Applied Mathematics
, vol.70
-
-
Brown, J.R.1
-
10
-
-
0033633230
-
What can we learn about SOC from Dynamical System Theory
-
Ph. Blanchard, B. Cessac, and T. Krüger, What can we learn about SOC from Dynamical System Theory, J. Statist. Phys. 98(1-2):375-404 (2000);
-
(2000)
J. Statist. Phys.
, vol.98
, Issue.1-2
, pp. 375-404
-
-
Blanchard, Ph.1
Cessac, B.2
Krüger, T.3
-
11
-
-
84983710542
-
Lyapunov exponents and transport in the Zhang model of self-organized criticality
-
B. Cessac, Ph. Blanchard, and T. Krüger, Lyapunov exponents and transport in the Zhang model of self-organized criticality, Phys. Rev. E 64 (2001);
-
(2001)
Phys. Rev. E
, vol.64
-
-
Cessac, B.1
Blanchard, Ph.2
Krüger, T.3
-
12
-
-
3543021549
-
Self-organized criticality and thermodynamic formalism
-
B. Cessac, Ph. Blanchard, T. Krüger, and J. L. Meunier, Self-organized criticality and thermodynamic formalism, J. Statist. Phys. 115:1283-1326 (2004).
-
(2004)
J. Statist. Phys.
, vol.115
, pp. 1283-1326
-
-
Cessac, B.1
Blanchard, Ph.2
Krüger, T.3
Meunier, J.L.4
-
13
-
-
0003344248
-
Ergodic theory on compact spaces
-
Springer-Verlag, Berlin-New York
-
M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math. 527, (Springer-Verlag, Berlin-New York, 1976).
-
(1976)
Lecture Notes in Math.
, vol.527
-
-
Denker, M.1
Grillenberger, C.2
Sigmund, K.3
-
14
-
-
0000561230
-
Exactly solved model of self-organized critical phenomena
-
1089
-
D. Dhar and R. Ramasway, Exactly solved Model of Self-Organized Critical Phenomena, Phys. Rew. Lett. 63(16): 1659-1662 (1089).
-
Phys. Rew. Lett.
, vol.63
, Issue.16
, pp. 1659-1662
-
-
Dhar, D.1
Ramasway, R.2
-
15
-
-
0004601963
-
Dynamical properties of the Zhang model of self-organized criticality
-
A. Giacommetti and A. Dias-Guilera, Dynamical properties of the Zhang model of self-organized criticality, Phys. Rev. Lett. E 58(1):247-253 (1998).
-
(1998)
Phys. Rev. Lett. E
, vol.58
, Issue.1
, pp. 247-253
-
-
Giacommetti, A.1
Dias-Guilera, A.2
-
17
-
-
0006737331
-
Self-organized criticality: Emergent complex behavior in physical and biological systems
-
Cambridge University Press
-
H. J. Jensen, Self-organized criticality: Emergent complex behavior in physical and biological systems, Cambridge Lecture Notes in Physics 10, (Cambridge University Press, 1998).
-
(1998)
Cambridge Lecture Notes in Physics
, vol.10
-
-
Jensen, H.J.1
-
18
-
-
51649161951
-
Lyapunov exponents, entropy and periodic orbits for diffeomorphisms
-
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Etudes Sci. Publ. Math. 51:137-173 (1980).
-
(1980)
Inst. Hautes Etudes Sci. Publ. Math.
, vol.51
, pp. 137-173
-
-
Katok, A.1
-
20
-
-
0003280184
-
Invariant manifolds, entropy and billiards; smooth maps with singularities
-
Springer, Berlin
-
A. Katok and J.-M. Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Math. 1222, (Springer, Berlin, 1986).
-
(1986)
Lecture Notes in Math.
, vol.1222
-
-
Katok, A.1
Strelcyn, J.-M.2
-
21
-
-
0141888973
-
Cellular automata model of magnetospheric-ionospheric coupling
-
B. V. Kozelov and T. V. Kozelova, Cellular automata model of magnetospheric-ionospheric coupling, Annales Geophysicae 21:1931-1938 (2003).
-
(2003)
Annales Geophysicae
, vol.21
, pp. 1931-1938
-
-
Kozelov, B.V.1
Kozelova, T.V.2
-
24
-
-
0001048955
-
The metric entropy of diffeomorphisms, I-II
-
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, I-II, Ann. of Math. (2) 122(3):509-539 and 540-574 (1985).
-
(1985)
Ann. of Math. (2)
, vol.122
, Issue.3
, pp. 509-539
-
-
Ledrappier, F.1
Young, L.-S.2
-
25
-
-
0039771567
-
Additive functions of intervals and Hausdorff measure
-
P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc. 42:15-23 (1946).
-
(1946)
Proc. Camb. Phil. Soc.
, vol.42
, pp. 15-23
-
-
Moran, P.A.P.1
-
26
-
-
84971972535
-
Dynamical systems with generalized Hyperbolic attractors: Hyperbolic, ergodic and topological properties
-
Y. Pesin, Dynamical systems with generalized Hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergod. Th. & Dynam. Sys. 12:123-151 (1992).
-
(1992)
Ergod. Th. & Dynam. Sys.
, vol.12
, pp. 123-151
-
-
Pesin, Y.1
-
27
-
-
0003406475
-
Dimension theory in dynamical systems
-
The University ofC hicago Press
-
Y. Pesin, Dimension theory in dynamical systems, Chicago Lect. in Math. Ser., (The University ofC hicago Press, 1997).
-
(1997)
Chicago Lect. in Math. Ser.
-
-
Pesin, Y.1
-
28
-
-
84974058023
-
Chains, entropy, coding
-
K. Petersen, Chains, entropy, coding, Ergod. Th. & Dynam. Sys. 6(3):415-448 (1986).
-
(1986)
Ergod. Th. & Dynam. Sys.
, vol.6
, Issue.3
, pp. 415-448
-
-
Petersen, K.1
-
32
-
-
0032350648
-
Dimension and invertibility of hyperbolic endomorphisms with singularities
-
J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities, Ergod. Th. &Dynam. Sys. 18:1257-1282 (1998).
-
(1998)
Ergod. Th. &Dynam. Sys.
, vol.18
, pp. 1257-1282
-
-
Schmeling, J.1
Troubetzkoy, S.2
-
33
-
-
35949010691
-
Scaling theory of self-organized criticality
-
H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63(5):470-473 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.63
, Issue.5
, pp. 470-473
-
-
Zhang, H.Y.1
|