메뉴 건너뛰기




Volumn 30, Issue 6, 2001, Pages 613-616

First-order Frege theory is undecidable

Author keywords

Decidability; Extensions; Frege

Indexed keywords


EID: 33645336691     PISSN: 00223611     EISSN: 15730433     Source Type: Journal    
DOI: 10.1023/A:1013362627445     Document Type: Article
Times cited : (4)

References (4)
  • 1
    • 33645349454 scopus 로고    scopus 로고
    • On a consistent subsystem of Frege's 'Grundgesetze'
    • Burgess, J. (1998): On a consistent subsystem of Frege's 'Grundgesetze', Notre Dame J. Formal Logic 39, 274-278.
    • (1998) Notre Dame J. Formal Logic , vol.39 , pp. 274-278
    • Burgess, J.1
  • 2
    • 2942681126 scopus 로고    scopus 로고
    • The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik
    • Heck, R. (1996): The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik, History and Philosophy of Logic 17, 209-220.
    • (1996) History and Philosophy of Logic , vol.17 , pp. 209-220
    • Heck, R.1
  • 3
    • 84972544418 scopus 로고
    • On the consistency of the first-order portion of Frege's logical system
    • Parsons, T. (1987): On the consistency of the first-order portion of Frege's logical system, Notre Dame J. Formal Logic 28, 161-188;
    • (1987) Notre Dame J. Formal Logic , vol.28 , pp. 161-188
    • Parsons, T.1
  • 4
    • 52549131564 scopus 로고
    • reprinted in W. Demopoulos (ed.), Harvard Univ. Press
    • reprinted in W. Demopoulos (ed.), Frege's Philosophy of Mathematics, Harvard Univ. Press, 1995, pp. 422-431.
    • (1995) Frege's Philosophy of Mathematics , pp. 422-431


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.