-
1
-
-
0000406322
-
-
CHAOEH 1054-1500 10.1063/1.166011
-
For a review, see P. B. Rhines, Chaos CHAOEH 1054-1500 10.1063/1.166011 4, 313 (1994).
-
(1994)
Chaos
, vol.4
, pp. 313
-
-
Rhines, P.B.1
-
2
-
-
0040515973
-
-
PYLAAG 0375-9601
-
A. M. Balk, Phys. Lett. A PYLAAG 0375-9601 155, 20 (1991).
-
(1991)
Phys. Lett. A
, vol.155
, pp. 20
-
-
Balk, A.M.1
-
3
-
-
24644513405
-
-
PYLAAG 0375-9601
-
A. M. Balk, Phys. Lett. A PYLAAG 0375-9601 345, 154 (2005).
-
(2005)
Phys. Lett. A
, vol.345
, pp. 154
-
-
Balk, A.M.1
-
4
-
-
0001605431
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.65.2137
-
J. Miller, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.65.2137 65, 2137 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 2137
-
-
Miller, J.1
-
5
-
-
35949004902
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.45.2328
-
J. Miller, P. B. Weichman, and M. C. Cross, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.45.2328 45, 2328 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2328
-
-
Miller, J.1
Weichman, P.B.2
Cross, M.C.3
-
7
-
-
21844488911
-
-
JSTPBS 0022-4715 10.1007/BF02179454
-
J. Michel and R. Robert, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF02179454 77, 645 (1994).
-
(1994)
J. Stat. Phys.
, vol.77
, pp. 645
-
-
Michel, J.1
Robert, R.2
-
8
-
-
14344276146
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.1761
-
P. B. Weichman and D. M. Petrich, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.1761 86, 1761 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1761
-
-
Weichman, P.B.1
Petrich, D.M.2
-
9
-
-
0008742607
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.50.2022
-
P. Chen and M. C. Cross, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.50.2022 50, 2022 (1994);
-
(1994)
Phys. Rev. e
, vol.50
, pp. 2022
-
-
Chen, P.1
Cross, M.C.2
-
10
-
-
6244276942
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.56.2284
-
P. Chen and M. C. Cross, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.56.2284 56, 2284 (1997).
-
(1997)
Phys. Rev. e
, vol.56
, pp. 2284
-
-
Chen, P.1
Cross, M.C.2
-
11
-
-
0035940508
-
-
PNASA6 0027-8424 10.1073/pnas.221449898
-
B. Turkington, A. Majda, K. Haven, and M. DiBattista, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.221449898 98, 12346 (2001).
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 12346
-
-
Turkington, B.1
Majda, A.2
Haven, K.3
Dibattista, M.4
-
12
-
-
0037194271
-
-
JFLSA7 0022-1120 10.1017/S0022112002008789
-
F. Bouchet and J. Sommeria, J. Fluid Mech. JFLSA7 0022-1120 10.1017/S0022112002008789 464, 165 (2002).
-
(2002)
J. Fluid Mech.
, vol.464
, pp. 165
-
-
Bouchet, F.1
Sommeria, J.2
-
13
-
-
27744520702
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.235003
-
The point charge limit is obtained by letting all nonzero σ k → ∞, Ak → 0 with fixed qk = σk Ak. The temperature scales via β σk = β, qk with finite Î2Ì, =1â• TÌ, and Ïfk Ïk ↠qk ÏÌ, k, with ÏÌ, k =exp { Î2Ì, [ÎÌ, k â' qk (Î0 âα)] }, and ÎÌ, k ensuring a unit integral. The nonzero charge region has measure zero. An example is the sinh-Poisson equation, Q0 =C sinh (ÎÌ, Î0), the symmetric special case of the three level system, qk =0,±1. F. Spineau and M. Vlad [Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.235003 94, 235003 (2005)] obtain, through a mysterious sequence of field theoretic mappings, an equilibrium equation with Q0 = C1 sinh (ÎÌ, Î0) [cosh (ÎÌ, Î0) â C2], the symmetric special case of the five level system, qk =0,±1,±2. All of these are, in turn, very special cases of the general theory presented here.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 235003
-
-
Spineau, F.1
Vlad, M.2
|