메뉴 건너뛰기




Volumn 6039, Issue , 2006, Pages

Multilevel modeling for inference of genetic regulatory networks

Author keywords

EM algorithm; Genetic regulatory networks; Mixture models; Multilevel mixed effects model; Time course data

Indexed keywords

ALGORITHMS; CORRELATION THEORY; GENES; LARGE SCALE SYSTEMS; OPTIMIZATION; YEAST;

EID: 33645228523     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.638449     Document Type: Conference Paper
Times cited : (2)

References (32)
  • 2
    • 15744367955 scopus 로고    scopus 로고
    • Overview of computational methods for the inference of gene regulatory networks
    • M. P. Styczynski and G. Stephanopoulos, "Overview of computational methods for the inference of gene regulatory networks," Comput. Chem. Eng. 29, pp. 519-534, 2005.
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 519-534
    • Styczynski, M.P.1    Stephanopoulos, G.2
  • 3
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Y. Luan and H. Li, "Clustering of time-course gene expression data using a mixed-effects model with B-splines," Bioinformatics 19, pp. 474-482, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 5
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haeseleer, S. Liang, and R. Somogyi, "Genetic network inference: from co-expression clustering to reverse engineering," Bioinformatics 16, pp. 707-726, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 6
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling
    • H. Toh and K. Horimoto, "Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling," Bioinformatics 18, pp. 287-297, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 7
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G. J. McLachlan, R. W. Bean, and D. Peel, "A mixture model-based approach to the clustering of microarray expression data," Bioinformatics 18, pp. 413-422, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 8
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, "Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization," Mol. Biol. Cell 9, pp. 3273-3297, 1998.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 9
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo, "Model-based clustering and data transformations for gene expression data," Bioinformatics 17, pp. 977-987, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm (with discussion)
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm (with discussion)." J. R. Stat. Soc. B 39, pp. 1-38, 1977.
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 33645225998 scopus 로고    scopus 로고
    • The em algorithm
    • J. Gentle, W. Hardle, and Y. Mori, eds. Springer-Verlag, New York
    • S. K. Ng, T. Krishnan, and G. J. McLachlan, "The EM algorithm, " in Handbook of Computational Statistics Vol. 1, J. Gentle, W. Hardle, and Y. Mori, eds., pp. 137-168, Springer-Verlag, New York, 2004.
    • (2004) Handbook of Computational Statistics Vol. 1 , vol.1 , pp. 137-168
    • Ng, S.K.1    Krishnan, T.2    McLachlan, G.J.3
  • 13
    • 0036583328 scopus 로고    scopus 로고
    • Statistical methods for analysis of time course gene expression data
    • H. Li, Y. Luan, F. Hong, and Y. Li, "Statistical methods for analysis of time course gene expression data," Front. Biosci. 7, pp. 90-98, 2002.
    • (2002) Front. Biosci. , vol.7 , pp. 90-98
    • Li, H.1    Luan, Y.2    Hong, F.3    Li, Y.4
  • 14
    • 32144437912 scopus 로고    scopus 로고
    • Use of microarray data via model-based classification in the study and prediction of survival from lung cancer
    • J. S. Shoemaker and S. M. Lin, eds.. Springer, New York
    • L. Ben-Tovim Jones, S. K. Ng, C. Ambroise, K. Monico, N. Khan, and G. J. McLachlan, "Use of microarray data via model-based classification in the study and prediction of survival from lung cancer," in Methods of Microarray Data Analysis IV, J. S. Shoemaker and S. M. Lin, eds., pp. 163-173. Springer, New York, 2005.
    • (2005) Methods of Microarray Data Analysis IV , pp. 163-173
    • Jones, L.B.-T.1    Ng, S.K.2    Ambroise, C.3    Monico, K.4    Khan, N.5    McLachlan, G.J.6
  • 15
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression pattern with self-organizing maps: Methods and application to hematopietic differentiation
    • P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Domitrovsky, E. S. Lander, and T. R. Golub, "Interpreting patterns of gene expression pattern with self-organizing maps: methods and application to hematopietic differentiation," Proc. Natl Acad. Sci. USA 96, pp. 2907-2912, 1999.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Domitrovsky, E.6    Lander, E.S.7    Golub, T.R.8
  • 19
    • 0016704147 scopus 로고
    • Best linear unbiased estimation and prediction under a selection model
    • C. R. Henderson, "Best linear unbiased estimation and prediction under a selection model," Biometrics 31, pp. 423-447, 1975.
    • (1975) Biometrics , vol.31 , pp. 423-447
    • Henderson, C.R.1
  • 20
    • 84972496336 scopus 로고
    • That BLUP is a good thing: The estimation of random effects (with discussion)
    • G. K. Robinson, "That BLUP is a good thing: the estimation of random effects (with discussion)," Stat. Sci. 6, pp. 15-51, 1991.
    • (1991) Stat. Sci. , vol.6 , pp. 15-51
    • Robinson, G.K.1
  • 21
    • 33645225007 scopus 로고    scopus 로고
    • Statistical approaches to analysing microarray data representing periodic biological processes: A case study using the yeast cell cycle
    • Department of Biological Statistics and Computational Biology, Cornell University
    • J. G. Booth, G. Casella, J. E. K. Cooke, and J. M. Davis, "Statistical approaches to analysing microarray data representing periodic biological processes: a case study using the yeast cell cycle," Technical report, Department of Biological Statistics and Computational Biology, Cornell University, 2004.
    • (2004) Technical Report
    • Booth, J.G.1    Casella, G.2    Cooke, J.E.K.3    Davis, J.M.4
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat. 6, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, "Validating clustering for gene expression data," Bioinformatics 17, pp. 309-318, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 25
    • 0035060857 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from experimental data
    • T. Chen, V. Filkov, and S. S. Skiena, "Identifying gene regulatory networks from experimental data," Parallel Comput. 27, pp. 141-162, 2001.
    • (2001) Parallel Comput. , vol.27 , pp. 141-162
    • Chen, T.1    Filkov, V.2    Skiena, S.S.3
  • 26
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg, "Controlling the false discovery rate: A practical and powerful approach to multiple testing," J. R. Stat. Soc. B 57, pp. 289-300, 1995.
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 27
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • S. Dudoit, J. P. Shaffer, and J. C. Boldrick, "Multiple hypothesis testing in microarray experiments," Stat. Sci. 18, pp. 71-103, 2003.
    • (2003) Stat. Sci. , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 29
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov and F. Csaki, eds. Akadémiai Kiadó, Budapest
    • H. Akaike, "Information theory and an extension of the maximum likelihood principle," in Second International Symposium on Information Theory, B. N. Petrov and F. Csaki, eds., pp. 267-281, Akadémiai Kiadó, Budapest, 1973.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 31
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • G. Celeux, O. Martin, and C. Lavergne, "Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments," Stat. Model. 5, pp. 243-267, 2005.
    • (2005) Stat. Model. , vol.5 , pp. 243-267
    • Celeux, G.1    Martin, O.2    Lavergne, C.3
  • 32
    • 2542607597 scopus 로고    scopus 로고
    • Using the EM algorithm to train neural networks: Misconceptions and a new algorithm for multiclass classification
    • S. K. Ng and G. J. McLachlan, "Using the EM algorithm to train neural networks: Misconceptions and a new algorithm for multiclass classification," IEEE T. Neural Networ. 15, pp. 738-749, 2004.
    • (2004) IEEE T. Neural Networ. , vol.15 , pp. 738-749
    • Ng, S.K.1    McLachlan, G.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.