-
1
-
-
15044352042
-
-
Wiley, New Jersey
-
G. J. McLachlan, K. A. Do, and C. Ambroise, Analyzing Microarray Gene Expression Data, Wiley, New Jersey, 2004.
-
(2004)
Analyzing Microarray Gene Expression Data
-
-
McLachlan, G.J.1
Do, K.A.2
Ambroise, C.3
-
2
-
-
15744367955
-
Overview of computational methods for the inference of gene regulatory networks
-
M. P. Styczynski and G. Stephanopoulos, "Overview of computational methods for the inference of gene regulatory networks," Comput. Chem. Eng. 29, pp. 519-534, 2005.
-
(2005)
Comput. Chem. Eng.
, vol.29
, pp. 519-534
-
-
Styczynski, M.P.1
Stephanopoulos, G.2
-
3
-
-
0037339264
-
Clustering of time-course gene expression data using a mixed-effects model with B-splines
-
Y. Luan and H. Li, "Clustering of time-course gene expression data using a mixed-effects model with B-splines," Bioinformatics 19, pp. 474-482, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 474-482
-
-
Luan, Y.1
Li, H.2
-
4
-
-
0032112293
-
A genome-wide transcriptional analysis of the mitotic cell cycle
-
R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, and R. W. Davis, "A genome-wide transcriptional analysis of the mitotic cell cycle," Mol. Cell 2, pp. 65-73, 1998.
-
(1998)
Mol. Cell
, vol.2
, pp. 65-73
-
-
Cho, R.J.1
Campbell, M.J.2
Winzeler, E.A.3
Steinmetz, L.4
Conway, A.5
Wodicka, L.6
Wolfsberg, T.G.7
Gabrielian, A.E.8
Landsman, D.9
Lockhart, D.J.10
Davis, R.W.11
-
5
-
-
0033736476
-
Genetic network inference: From co-expression clustering to reverse engineering
-
P. D'haeseleer, S. Liang, and R. Somogyi, "Genetic network inference: from co-expression clustering to reverse engineering," Bioinformatics 16, pp. 707-726, 2000.
-
(2000)
Bioinformatics
, vol.16
, pp. 707-726
-
-
D'haeseleer, P.1
Liang, S.2
Somogyi, R.3
-
6
-
-
0036191190
-
Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling
-
H. Toh and K. Horimoto, "Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling," Bioinformatics 18, pp. 287-297, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 287-297
-
-
Toh, H.1
Horimoto, K.2
-
7
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
G. J. McLachlan, R. W. Bean, and D. Peel, "A mixture model-based approach to the clustering of microarray expression data," Bioinformatics 18, pp. 413-422, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
8
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
P. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, "Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization," Mol. Biol. Cell 9, pp. 3273-3297, 1998.
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
9
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo, "Model-based clustering and data transformations for gene expression data," Bioinformatics 17, pp. 977-987, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
11
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm (with discussion)
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm (with discussion)." J. R. Stat. Soc. B 39, pp. 1-38, 1977.
-
(1977)
J. R. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
12
-
-
33645225998
-
The em algorithm
-
J. Gentle, W. Hardle, and Y. Mori, eds. Springer-Verlag, New York
-
S. K. Ng, T. Krishnan, and G. J. McLachlan, "The EM algorithm, " in Handbook of Computational Statistics Vol. 1, J. Gentle, W. Hardle, and Y. Mori, eds., pp. 137-168, Springer-Verlag, New York, 2004.
-
(2004)
Handbook of Computational Statistics Vol. 1
, vol.1
, pp. 137-168
-
-
Ng, S.K.1
Krishnan, T.2
McLachlan, G.J.3
-
13
-
-
0036583328
-
Statistical methods for analysis of time course gene expression data
-
H. Li, Y. Luan, F. Hong, and Y. Li, "Statistical methods for analysis of time course gene expression data," Front. Biosci. 7, pp. 90-98, 2002.
-
(2002)
Front. Biosci.
, vol.7
, pp. 90-98
-
-
Li, H.1
Luan, Y.2
Hong, F.3
Li, Y.4
-
14
-
-
32144437912
-
Use of microarray data via model-based classification in the study and prediction of survival from lung cancer
-
J. S. Shoemaker and S. M. Lin, eds.. Springer, New York
-
L. Ben-Tovim Jones, S. K. Ng, C. Ambroise, K. Monico, N. Khan, and G. J. McLachlan, "Use of microarray data via model-based classification in the study and prediction of survival from lung cancer," in Methods of Microarray Data Analysis IV, J. S. Shoemaker and S. M. Lin, eds., pp. 163-173. Springer, New York, 2005.
-
(2005)
Methods of Microarray Data Analysis IV
, pp. 163-173
-
-
Jones, L.B.-T.1
Ng, S.K.2
Ambroise, C.3
Monico, K.4
Khan, N.5
McLachlan, G.J.6
-
15
-
-
0033027794
-
Interpreting patterns of gene expression pattern with self-organizing maps: Methods and application to hematopietic differentiation
-
P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Domitrovsky, E. S. Lander, and T. R. Golub, "Interpreting patterns of gene expression pattern with self-organizing maps: methods and application to hematopietic differentiation," Proc. Natl Acad. Sci. USA 96, pp. 2907-2912, 1999.
-
(1999)
Proc. Natl Acad. Sci. USA
, vol.96
, pp. 2907-2912
-
-
Tamayo, P.1
Slonim, D.2
Mesirov, J.3
Zhu, Q.4
Kitareewan, S.5
Domitrovsky, E.6
Lander, E.S.7
Golub, T.R.8
-
17
-
-
0003646026
-
-
Wiley, New York
-
C. E. McCulloch and S. R. Searle, Generalized, Linear, and Mixed Models, Wiley, New York, 2001.
-
(2001)
Generalized, Linear, and Mixed Models
-
-
McCulloch, C.E.1
Searle, S.R.2
-
19
-
-
0016704147
-
Best linear unbiased estimation and prediction under a selection model
-
C. R. Henderson, "Best linear unbiased estimation and prediction under a selection model," Biometrics 31, pp. 423-447, 1975.
-
(1975)
Biometrics
, vol.31
, pp. 423-447
-
-
Henderson, C.R.1
-
20
-
-
84972496336
-
That BLUP is a good thing: The estimation of random effects (with discussion)
-
G. K. Robinson, "That BLUP is a good thing: the estimation of random effects (with discussion)," Stat. Sci. 6, pp. 15-51, 1991.
-
(1991)
Stat. Sci.
, vol.6
, pp. 15-51
-
-
Robinson, G.K.1
-
21
-
-
33645225007
-
Statistical approaches to analysing microarray data representing periodic biological processes: A case study using the yeast cell cycle
-
Department of Biological Statistics and Computational Biology, Cornell University
-
J. G. Booth, G. Casella, J. E. K. Cooke, and J. M. Davis, "Statistical approaches to analysing microarray data representing periodic biological processes: a case study using the yeast cell cycle," Technical report, Department of Biological Statistics and Computational Biology, Cornell University, 2004.
-
(2004)
Technical Report
-
-
Booth, J.G.1
Casella, G.2
Cooke, J.E.K.3
Davis, J.M.4
-
22
-
-
0033028596
-
Systematic determination of genetic network architecture
-
S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church, "Systematic determination of genetic network architecture," Nature Genet. 22, pp. 281-285, 1999.
-
(1999)
Nature Genet.
, vol.22
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
23
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the dimension of a model," Ann. Stat. 6, pp. 461-464, 1978.
-
(1978)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
24
-
-
0035024021
-
Validating clustering for gene expression data
-
K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, "Validating clustering for gene expression data," Bioinformatics 17, pp. 309-318, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 309-318
-
-
Yeung, K.Y.1
Haynor, D.R.2
Ruzzo, W.L.3
-
25
-
-
0035060857
-
Identifying gene regulatory networks from experimental data
-
T. Chen, V. Filkov, and S. S. Skiena, "Identifying gene regulatory networks from experimental data," Parallel Comput. 27, pp. 141-162, 2001.
-
(2001)
Parallel Comput.
, vol.27
, pp. 141-162
-
-
Chen, T.1
Filkov, V.2
Skiena, S.S.3
-
26
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Y. Benjamini and Y. Hochberg, "Controlling the false discovery rate: A practical and powerful approach to multiple testing," J. R. Stat. Soc. B 57, pp. 289-300, 1995.
-
(1995)
J. R. Stat. Soc. B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
27
-
-
0043203327
-
Multiple hypothesis testing in microarray experiments
-
S. Dudoit, J. P. Shaffer, and J. C. Boldrick, "Multiple hypothesis testing in microarray experiments," Stat. Sci. 18, pp. 71-103, 2003.
-
(2003)
Stat. Sci.
, vol.18
, pp. 71-103
-
-
Dudoit, S.1
Shaffer, J.P.2
Boldrick, J.C.3
-
29
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
B. N. Petrov and F. Csaki, eds. Akadémiai Kiadó, Budapest
-
H. Akaike, "Information theory and an extension of the maximum likelihood principle," in Second International Symposium on Information Theory, B. N. Petrov and F. Csaki, eds., pp. 267-281, Akadémiai Kiadó, Budapest, 1973.
-
(1973)
Second International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
30
-
-
0004264401
-
-
Wiley, New York
-
S. R. Searle, G. Casella, and C. E. McCulloch, Variance Components, Wiley, New York, 1992.
-
(1992)
Variance Components
-
-
Searle, S.R.1
Casella, G.2
McCulloch, C.E.3
-
31
-
-
26844458204
-
Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
-
G. Celeux, O. Martin, and C. Lavergne, "Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments," Stat. Model. 5, pp. 243-267, 2005.
-
(2005)
Stat. Model.
, vol.5
, pp. 243-267
-
-
Celeux, G.1
Martin, O.2
Lavergne, C.3
-
32
-
-
2542607597
-
Using the EM algorithm to train neural networks: Misconceptions and a new algorithm for multiclass classification
-
S. K. Ng and G. J. McLachlan, "Using the EM algorithm to train neural networks: Misconceptions and a new algorithm for multiclass classification," IEEE T. Neural Networ. 15, pp. 738-749, 2004.
-
(2004)
IEEE T. Neural Networ.
, vol.15
, pp. 738-749
-
-
Ng, S.K.1
McLachlan, G.J.2
|