메뉴 건너뛰기




Volumn 415, Issue 1, 2006, Pages 140-166

Cluster robustness of preconditioned gradient subspace iteration eigensolvers

Author keywords

Clustered eigenvalues; Conjugate gradient method; Convergence estimates; Preconditioning; Self adjoint eigenvalue problem; Steepest descent ascent method

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; GRADIENT METHODS; ITERATIVE METHODS; NUMERICAL METHODS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 33645139975     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2005.06.039     Document Type: Article
Times cited : (17)

References (28)
  • 2
    • 0031494214 scopus 로고    scopus 로고
    • Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblems
    • L. Bergamaschi, G. Gambolati, and G. Pini Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblems Numer. Linear Algebra Appl. 4 1997 69 84
    • (1997) Numer. Linear Algebra Appl. , vol.4 , pp. 69-84
    • Bergamaschi, L.1    Gambolati, G.2    Pini, G.3
  • 3
    • 0344845742 scopus 로고    scopus 로고
    • A subspace preconditioning algorithm for eigenvector/eigenvalue computation
    • J.H. Bramble, J.E. Pasciak, and A.V. Knyazev A subspace preconditioning algorithm for eigenvector/eigenvalue computation Adv. Comput. Math. 6 1996 159 189
    • (1996) Adv. Comput. Math. , vol.6 , pp. 159-189
    • Bramble, J.H.1    Pasciak, J.E.2    Knyazev, A.V.3
  • 4
    • 0031079150 scopus 로고    scopus 로고
    • Multilevel aggregation method for solving large-scale generalized eigenvalue problems in structural dynamics
    • V.E. Bulgakov, M.V. Belyi, and K.M. Mathisen Multilevel aggregation method for solving large-scale generalized eigenvalue problems in structural dynamics Internat. J. Numer. Methods Engrg. 40 1997 453 471
    • (1997) Internat. J. Numer. Methods Engrg. , vol.40 , pp. 453-471
    • Bulgakov, V.E.1    Belyi, M.V.2    Mathisen, K.M.3
  • 6
    • 0002207477 scopus 로고
    • Group iterative method for finding lower-order eigenvalues
    • Moscow University, Ser. 15
    • E.G. D'yakonov, A.V. Knyazev, Group iterative method for finding lower-order eigenvalues, Moscow University, Ser. 15, Comput. Math. Cybernet. 2 (1982) 32-40.
    • (1982) Comput. Math. Cybernet. , vol.2 , pp. 32-40
    • D'yakonov, E.G.1    Knyazev, A.V.2
  • 7
    • 0030189890 scopus 로고    scopus 로고
    • Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems
    • Y.T. Feng, and D.R. Owen Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems Internat. J. Numer. Methods Engrg. 39 1996 2209 2229
    • (1996) Internat. J. Numer. Methods Engrg. , vol.39 , pp. 2209-2229
    • Feng, Y.T.1    Owen, D.R.2
  • 8
    • 34250123818 scopus 로고
    • Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness
    • A.V. Knyazev Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness Math. Notes 38 1986 998 1002
    • (1986) Math. Notes , vol.38 , pp. 998-1002
    • Knyazev, A.V.1
  • 9
    • 0000141536 scopus 로고
    • Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem
    • A.V. Knyazev Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem Sov. J. Numer. Anal. Math. Modelling 2 1987 371 396
    • (1987) Sov. J. Numer. Anal. Math. Modelling , vol.2 , pp. 371-396
    • Knyazev, A.V.1
  • 10
    • 0001139744 scopus 로고
    • A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace
    • A.V. Knyazev A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace Internat. Ser. Numer. Math. 96 1991 143 154
    • (1991) Internat. Ser. Numer. Math. , vol.96 , pp. 143-154
    • Knyazev, A.V.1
  • 11
    • 0000522446 scopus 로고    scopus 로고
    • Preconditioned eigensolvers-an oxymoron?
    • A.V. Knyazev Preconditioned eigensolvers-an oxymoron? Electron. Trans. Numer. Anal. 7 1998 104 123
    • (1998) Electron. Trans. Numer. Anal. , vol.7 , pp. 104-123
    • Knyazev, A.V.1
  • 12
    • 0036223489 scopus 로고    scopus 로고
    • Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method
    • A.V. Knyazev Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method SIAM J. Sci. Comput. 2 2001 517 541
    • (2001) SIAM J. Sci. Comput. , vol.2 , pp. 517-541
    • Knyazev, A.V.1
  • 13
    • 32044463478 scopus 로고    scopus 로고
    • A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems
    • A.V. Knyazev, and K. Neymeyr A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems Linear Algebra Appl. 358 2003 95 114
    • (2003) Linear Algebra Appl. , vol.358 , pp. 95-114
    • Knyazev, A.V.1    Neymeyr, K.2
  • 15
    • 0028483153 scopus 로고
    • The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem
    • A.V. Knyazev, and A.L. Skorokhodov The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem SIAM J. Numer. Anal. 31 1994 1226 1239
    • (1994) SIAM J. Numer. Anal. , vol.31 , pp. 1226-1239
    • Knyazev, A.V.1    Skorokhodov, A.L.2
  • 16
    • 0036003403 scopus 로고    scopus 로고
    • A geometric theory for preconditioned inverse iteration applied to a subspace
    • K. Neymeyr A geometric theory for preconditioned inverse iteration applied to a subspace Math. Comp. 71 2002 197 216
    • (2002) Math. Comp. , vol.71 , pp. 197-216
    • Neymeyr, K.1
  • 17
    • 0035586115 scopus 로고    scopus 로고
    • A geometric theory for preconditioned inverse iteration. I: Extrema of the Rayleigh quotient
    • K. Neymeyr A geometric theory for preconditioned inverse iteration. I: Extrema of the Rayleigh quotient Linear Algebra Appl. 322 2001 61 85
    • (2001) Linear Algebra Appl. , vol.322 , pp. 61-85
    • Neymeyr, K.1
  • 18
    • 0035585865 scopus 로고    scopus 로고
    • A geometric theory for preconditioned inverse iteration. II: Convergence estimates
    • K. Neymeyr A geometric theory for preconditioned inverse iteration. II: Convergence estimates Linear Algebra Appl. 322 2001 87 104
    • (2001) Linear Algebra Appl. , vol.322 , pp. 87-104
    • Neymeyr, K.1
  • 19
    • 33645140923 scopus 로고    scopus 로고
    • A geometric theory for preconditioned inverse iteration. IV: On the fastest convergence cases
    • accepted for publication
    • K. Neymeyr, A geometric theory for preconditioned inverse iteration. IV: On the fastest convergence cases, Linear Algebra Appl., accepted for publication.
    • Linear Algebra Appl.
    • Neymeyr, K.1
  • 20
    • 0036101413 scopus 로고    scopus 로고
    • Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem
    • Y. Notay Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem Numer. Linear Algebra Appl. 9 2001 21 44
    • (2001) Numer. Linear Algebra Appl. , vol.9 , pp. 21-44
    • Notay, Y.1
  • 21
    • 0033354544 scopus 로고    scopus 로고
    • On the convergence rate of a preconditioned subspace eigensolver
    • S. Oliveira On the convergence rate of a preconditioned subspace eigensolver Computing 63 1999 219 231
    • (1999) Computing , vol.63 , pp. 219-231
    • Oliveira, S.1
  • 22
    • 1842563888 scopus 로고    scopus 로고
    • Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems I. the preconditioning aspect
    • E. Ovtchinnikov Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems I. The preconditioning aspect SIAM J. Numer. Anal. 41 2003 258 271
    • (2003) SIAM J. Numer. Anal. , vol.41 , pp. 258-271
    • Ovtchinnikov, E.1
  • 23
    • 25744447680 scopus 로고    scopus 로고
    • Convergence estimates for preconditioned gradient subspace iteration eigensolvers
    • Universitat Utrecht, June
    • E. Ovtchinnikov, Convergence estimates for preconditioned gradient subspace iteration eigensolvers, Technical Report 1244, Universitat Utrecht, June 2002.
    • (2002) Technical Report , vol.1244
    • Ovtchinnikov, E.1
  • 24
    • 33645147834 scopus 로고    scopus 로고
    • Cluster robust estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
    • accepted for publication
    • E. Ovtchinnikov, Cluster robust estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces, Linear Algebra Appl., accepted for publication.
    • Linear Algebra Appl.
    • Ovtchinnikov, E.1
  • 25
    • 33645156379 scopus 로고    scopus 로고
    • Cluster robust estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
    • accepted for publication
    • E. Ovtchinnikov, Cluster robust estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues, Linear Algebra Appl., accepted for publication.
    • Linear Algebra Appl.
    • Ovtchinnikov, E.1
  • 26
    • 84966257139 scopus 로고
    • The Rayleigh quotient iteration and some generalizations
    • B.N. Parlett The Rayleigh quotient iteration and some generalizations Math. Comp. 28 1974 679 693
    • (1974) Math. Comp. , vol.28 , pp. 679-693
    • Parlett, B.N.1
  • 28
    • 0000057534 scopus 로고
    • The steepest descent method for an eigenvalue problem with semi-bounded operators
    • B. Samokish The steepest descent method for an eigenvalue problem with semi-bounded operators Izv. Vyssh. Uchebn. Zaved. Mat. 5 1958 105 114
    • (1958) Izv. Vyssh. Uchebn. Zaved. Mat. , vol.5 , pp. 105-114
    • Samokish, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.