-
2
-
-
0031494214
-
Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblems
-
L. Bergamaschi, G. Gambolati, and G. Pini Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblems Numer. Linear Algebra Appl. 4 1997 69 84
-
(1997)
Numer. Linear Algebra Appl.
, vol.4
, pp. 69-84
-
-
Bergamaschi, L.1
Gambolati, G.2
Pini, G.3
-
3
-
-
0344845742
-
A subspace preconditioning algorithm for eigenvector/eigenvalue computation
-
J.H. Bramble, J.E. Pasciak, and A.V. Knyazev A subspace preconditioning algorithm for eigenvector/eigenvalue computation Adv. Comput. Math. 6 1996 159 189
-
(1996)
Adv. Comput. Math.
, vol.6
, pp. 159-189
-
-
Bramble, J.H.1
Pasciak, J.E.2
Knyazev, A.V.3
-
4
-
-
0031079150
-
Multilevel aggregation method for solving large-scale generalized eigenvalue problems in structural dynamics
-
V.E. Bulgakov, M.V. Belyi, and K.M. Mathisen Multilevel aggregation method for solving large-scale generalized eigenvalue problems in structural dynamics Internat. J. Numer. Methods Engrg. 40 1997 453 471
-
(1997)
Internat. J. Numer. Methods Engrg.
, vol.40
, pp. 453-471
-
-
Bulgakov, V.E.1
Belyi, M.V.2
Mathisen, K.M.3
-
6
-
-
0002207477
-
Group iterative method for finding lower-order eigenvalues
-
Moscow University, Ser. 15
-
E.G. D'yakonov, A.V. Knyazev, Group iterative method for finding lower-order eigenvalues, Moscow University, Ser. 15, Comput. Math. Cybernet. 2 (1982) 32-40.
-
(1982)
Comput. Math. Cybernet.
, vol.2
, pp. 32-40
-
-
D'yakonov, E.G.1
Knyazev, A.V.2
-
7
-
-
0030189890
-
Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems
-
Y.T. Feng, and D.R. Owen Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems Internat. J. Numer. Methods Engrg. 39 1996 2209 2229
-
(1996)
Internat. J. Numer. Methods Engrg.
, vol.39
, pp. 2209-2229
-
-
Feng, Y.T.1
Owen, D.R.2
-
8
-
-
34250123818
-
Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness
-
A.V. Knyazev Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness Math. Notes 38 1986 998 1002
-
(1986)
Math. Notes
, vol.38
, pp. 998-1002
-
-
Knyazev, A.V.1
-
9
-
-
0000141536
-
Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem
-
A.V. Knyazev Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem Sov. J. Numer. Anal. Math. Modelling 2 1987 371 396
-
(1987)
Sov. J. Numer. Anal. Math. Modelling
, vol.2
, pp. 371-396
-
-
Knyazev, A.V.1
-
10
-
-
0001139744
-
A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace
-
A.V. Knyazev A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace Internat. Ser. Numer. Math. 96 1991 143 154
-
(1991)
Internat. Ser. Numer. Math.
, vol.96
, pp. 143-154
-
-
Knyazev, A.V.1
-
11
-
-
0000522446
-
Preconditioned eigensolvers-an oxymoron?
-
A.V. Knyazev Preconditioned eigensolvers-an oxymoron? Electron. Trans. Numer. Anal. 7 1998 104 123
-
(1998)
Electron. Trans. Numer. Anal.
, vol.7
, pp. 104-123
-
-
Knyazev, A.V.1
-
12
-
-
0036223489
-
Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method
-
A.V. Knyazev Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method SIAM J. Sci. Comput. 2 2001 517 541
-
(2001)
SIAM J. Sci. Comput.
, vol.2
, pp. 517-541
-
-
Knyazev, A.V.1
-
13
-
-
32044463478
-
A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems
-
A.V. Knyazev, and K. Neymeyr A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems Linear Algebra Appl. 358 2003 95 114
-
(2003)
Linear Algebra Appl.
, vol.358
, pp. 95-114
-
-
Knyazev, A.V.1
Neymeyr, K.2
-
15
-
-
0028483153
-
The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem
-
A.V. Knyazev, and A.L. Skorokhodov The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem SIAM J. Numer. Anal. 31 1994 1226 1239
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, pp. 1226-1239
-
-
Knyazev, A.V.1
Skorokhodov, A.L.2
-
16
-
-
0036003403
-
A geometric theory for preconditioned inverse iteration applied to a subspace
-
K. Neymeyr A geometric theory for preconditioned inverse iteration applied to a subspace Math. Comp. 71 2002 197 216
-
(2002)
Math. Comp.
, vol.71
, pp. 197-216
-
-
Neymeyr, K.1
-
17
-
-
0035586115
-
A geometric theory for preconditioned inverse iteration. I: Extrema of the Rayleigh quotient
-
K. Neymeyr A geometric theory for preconditioned inverse iteration. I: Extrema of the Rayleigh quotient Linear Algebra Appl. 322 2001 61 85
-
(2001)
Linear Algebra Appl.
, vol.322
, pp. 61-85
-
-
Neymeyr, K.1
-
18
-
-
0035585865
-
A geometric theory for preconditioned inverse iteration. II: Convergence estimates
-
K. Neymeyr A geometric theory for preconditioned inverse iteration. II: Convergence estimates Linear Algebra Appl. 322 2001 87 104
-
(2001)
Linear Algebra Appl.
, vol.322
, pp. 87-104
-
-
Neymeyr, K.1
-
19
-
-
33645140923
-
A geometric theory for preconditioned inverse iteration. IV: On the fastest convergence cases
-
accepted for publication
-
K. Neymeyr, A geometric theory for preconditioned inverse iteration. IV: On the fastest convergence cases, Linear Algebra Appl., accepted for publication.
-
Linear Algebra Appl.
-
-
Neymeyr, K.1
-
20
-
-
0036101413
-
Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem
-
Y. Notay Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem Numer. Linear Algebra Appl. 9 2001 21 44
-
(2001)
Numer. Linear Algebra Appl.
, vol.9
, pp. 21-44
-
-
Notay, Y.1
-
21
-
-
0033354544
-
On the convergence rate of a preconditioned subspace eigensolver
-
S. Oliveira On the convergence rate of a preconditioned subspace eigensolver Computing 63 1999 219 231
-
(1999)
Computing
, vol.63
, pp. 219-231
-
-
Oliveira, S.1
-
22
-
-
1842563888
-
Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems I. the preconditioning aspect
-
E. Ovtchinnikov Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems I. The preconditioning aspect SIAM J. Numer. Anal. 41 2003 258 271
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 258-271
-
-
Ovtchinnikov, E.1
-
23
-
-
25744447680
-
Convergence estimates for preconditioned gradient subspace iteration eigensolvers
-
Universitat Utrecht, June
-
E. Ovtchinnikov, Convergence estimates for preconditioned gradient subspace iteration eigensolvers, Technical Report 1244, Universitat Utrecht, June 2002.
-
(2002)
Technical Report
, vol.1244
-
-
Ovtchinnikov, E.1
-
24
-
-
33645147834
-
Cluster robust estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
-
accepted for publication
-
E. Ovtchinnikov, Cluster robust estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces, Linear Algebra Appl., accepted for publication.
-
Linear Algebra Appl.
-
-
Ovtchinnikov, E.1
-
25
-
-
33645156379
-
Cluster robust estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
-
accepted for publication
-
E. Ovtchinnikov, Cluster robust estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues, Linear Algebra Appl., accepted for publication.
-
Linear Algebra Appl.
-
-
Ovtchinnikov, E.1
-
26
-
-
84966257139
-
The Rayleigh quotient iteration and some generalizations
-
B.N. Parlett The Rayleigh quotient iteration and some generalizations Math. Comp. 28 1974 679 693
-
(1974)
Math. Comp.
, vol.28
, pp. 679-693
-
-
Parlett, B.N.1
-
28
-
-
0000057534
-
The steepest descent method for an eigenvalue problem with semi-bounded operators
-
B. Samokish The steepest descent method for an eigenvalue problem with semi-bounded operators Izv. Vyssh. Uchebn. Zaved. Mat. 5 1958 105 114
-
(1958)
Izv. Vyssh. Uchebn. Zaved. Mat.
, vol.5
, pp. 105-114
-
-
Samokish, B.1
|