메뉴 건너뛰기




Volumn 26, Issue 2, 2006, Pages 481-524

Analytic families of reducible linear quasi-periodic differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33645077329     PISSN: 01433857     EISSN: 14694417     Source Type: Journal    
DOI: 10.1017/S0143385705000362     Document Type: Article
Times cited : (23)

References (46)
  • 1
    • 84972566320 scopus 로고
    • Almost periodic Schrödinger operators II. The integrated density of states
    • [AS83]
    • [AS83] J. Avron and B. Simon. Almost periodic Schrödinger operators II. The integrated density of states. Duke Math. J. 50 (1983), 369-391.
    • (1983) Duke Math. J. , vol.50 , pp. 369-391
    • Avron, J.1    Simon, B.2
  • 3
    • 21844486186 scopus 로고
    • Geometrical aspects of stability theory for Hill's equations
    • [BL95]
    • [BL95] H. W. Broer and M. Levi. Geometrical aspects of stability theory for Hill's equations. Arch. Rational Mech. Anal. 131(3) (1995), 225-240.
    • (1995) Arch. Rational Mech. Anal. , vol.131 , Issue.3 , pp. 225-240
    • Broer, H.W.1    Levi, M.2
  • 5
    • 0031287692 scopus 로고    scopus 로고
    • On Melnikov's persistency problem
    • [Bou97]
    • [Bou97] J. Bourgain. On Melnikov's persistency problem. Math. Res. Lett. 4(4) (1997), 445-458.
    • (1997) Math. Res. Lett. , vol.4 , Issue.4 , pp. 445-458
    • Bourgain, J.1
  • 6
    • 27144516452 scopus 로고    scopus 로고
    • Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena
    • [BS98]
    • [BS98] H. W. Broer and C. Simó. Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bul. Soc. Bras. Mat. 29 (1998), 253-293.
    • (1998) Bul. Soc. Bras. Mat. , vol.29 , pp. 253-293
    • Broer, H.W.1    Simó, C.2
  • 7
    • 0242275980 scopus 로고    scopus 로고
    • Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation
    • [BPS03]
    • [BPS03] H. W. Broer, J. Puig and C. Simó. Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Comm. Math. Phys. 241(2-3) (2003), 467-503.
    • (2003) Comm. Math. Phys. , vol.241 , Issue.2-3 , pp. 467-503
    • Broer, H.W.1    Puig, J.2    Simó, C.3
  • 8
    • 0034692247 scopus 로고    scopus 로고
    • Resonance tongues in Hill's equations: A geometric approach
    • [BS00]
    • [BS00] H. W. Broer and C. Simo. Resonance tongues in Hill's equations: a geometric approach. J. Differential Equations 166(2) (2000), 290-327.
    • (2000) J. Differential Equations , vol.166 , Issue.2 , pp. 290-327
    • Broer, H.W.1    Simo, C.2
  • 9
    • 0041529988 scopus 로고    scopus 로고
    • Phase space structure of multidimensional systems by means of the mean exponential growth factor of nearby orbits (MEGNO)
    • [CGS03]
    • [CGS03] P. M. Cincotta, C. M. Giordano and C. Simó. Phase space structure of multidimensional systems by means of the Mean Exponential Growth factor of Nearby Orbits (MEGNO). Physica D 182 (2003), 151-178.
    • (2003) Physica D , vol.182 , pp. 151-178
    • Cincotta, P.M.1    Giordano, C.M.2    Simó, C.3
  • 11
    • 0000412297 scopus 로고
    • Perturbations of stable invariant tori for Hamiltonian systems
    • [Eli88]
    • [Eli88] L. H. Eliasson. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(1) (1989), 115-147.
    • (1989) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.15 , Issue.1 , pp. 115-147
    • Eliasson, L.H.1
  • 12
    • 0001401431 scopus 로고
    • Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation
    • [Eli92]
    • [Eli92] L. H. Eliasson. Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146 (1992), 447-482.
    • (1992) Comm. Math. Phys. , vol.146 , pp. 447-482
    • Eliasson, L.H.1
  • 13
    • 0842315728 scopus 로고    scopus 로고
    • One-dimensional quasi-periodic Schrödinger operators - Dynamical systems and spectral theory
    • [Eli98a]. Birkhäuser, Basel
    • [Eli98a] L. H. Eliasson. One-dimensional quasi-periodic Schrödinger operators - dynamical systems and spectral theory. European Congress of Mathematics, Vol. I (Budapest, 1996). Birkhäuser, Basel, 1998, pp. 178-190.
    • (1998) European Congress of Mathematics, Vol. I (Budapest, 1996) , vol.1 , pp. 178-190
    • Eliasson, L.H.1
  • 14
    • 0013297918 scopus 로고    scopus 로고
    • Reducibility and point spectrum for linear quasi-periodic skew-products
    • [Eli98b], number Extra Vol. II (electronic)
    • [Eli98b] L. H. Eliasson. Reducibility and point spectrum for linear quasi-periodic skew-products. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra Vol. II (electronic), 1998, pp. 779-787.
    • (1998) Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998) , vol.2 , pp. 779-787
    • Eliasson, L.H.1
  • 16
    • 29144531817 scopus 로고    scopus 로고
    • Almost reducibility of linear quasi-periodic systems
    • [Eli01]. American Mathematical Society, Providence, RI
    • [Eli01] L. H. Eliasson. Almost reducibility of linear quasi-periodic systems. Smooth Ergodic Theory and its Applications (Seattle, WA, 1999). American Mathematical Society, Providence, RI, 2001, pp. 679-705.
    • (2001) Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999) , pp. 679-705
    • Eliasson, L.H.1
  • 18
    • 0041937763 scopus 로고    scopus 로고
    • On the nature of the spectrum of the quasi-periodic Schrödinger operator
    • [FJP02]
    • [FJP02] R. Fabbri, R. Johnson and R. Pavani. On the nature of the spectrum of the quasi-periodic Schrödinger operator. Nonlinear Anal Real World Appl. 3(1) (2002), 37-59.
    • (2002) Nonlinear Anal Real World Appl. , vol.3 , Issue.1 , pp. 37-59
    • Fabbri, R.1    Johnson, R.2    Pavani, R.3
  • 20
    • 51249181642 scopus 로고
    • Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
    • [Her83]
    • [Her83] M. R. Herman. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helvetici 58(3) (1983), 453-502.
    • (1983) Comment. Math. Helvetici , vol.58 , Issue.3 , pp. 453-502
    • Herman, M.R.1
  • 22
    • 0000423029 scopus 로고
    • The rotation number for almost periodic potentials
    • [JM82]
    • [JM82] R. Johnson and J. Moser. The rotation number for almost periodic potentials. Comm. Math. Phys. 84 (1982), 403-438.
    • (1982) Comm. Math. Phys. , vol.84 , pp. 403-438
    • Johnson, R.1    Moser, J.2
  • 23
    • 0000720295 scopus 로고
    • Analyticity of spectral subbundles
    • [Joh80]
    • [Joh80] R. Johnson. Analyticity of spectral subbundles. J. Diff. Eq. 35 (1980), 366-387.
    • (1980) J. Diff. Eq. , vol.35 , pp. 366-387
    • Johnson, R.1
  • 24
    • 0842272593 scopus 로고
    • A review of recent work on almost periodic differential and difference operators
    • [Joh83]
    • [Joh83] R. Johnson. A review of recent work on almost periodic differential and difference operators. Acta Appl. Math. 1(3) (1983), 241-261.
    • (1983) Acta Appl. Math. , vol.1 , Issue.3 , pp. 241-261
    • Johnson, R.1
  • 25
    • 0042939448 scopus 로고
    • Cantor spectrum for the quasi-periodic Schrödinger equation
    • [Joh91]
    • [Joh91] R. Johnson. Cantor spectrum for the quasi-periodic Schrödinger equation. J. Diff. Eq. 91 (1991), 88-110.
    • (1991) J. Diff. Eq. , vol.91 , pp. 88-110
    • Johnson, R.1
  • 26
    • 0000688206 scopus 로고
    • Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems
    • [JS81]
    • [JS81] R. Johnson and G. R. Sell. Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Diff. Eq. 41 (1981), 262-288.
    • (1981) J. Diff. Eq. , vol.41 , pp. 262-288
    • Johnson, R.1    Sell, G.R.2
  • 27
    • 0000868522 scopus 로고
    • On the reducibility of linear differential equations with quasiperiodic coefficients
    • [JS92]
    • [JS92] À. Jorba and C. Simó. On the reducibility of linear differential equations with quasiperiodic coefficients. J. Diff. Eq. 98(1) (1992), 111-124.
    • (1992) J. Diff. Eq. , vol.98 , Issue.1 , pp. 111-124
    • Jorba, À.1    Simó, C.2
  • 28
    • 0030520995 scopus 로고    scopus 로고
    • On quasi-periodic perturbations of elliptic equilibrium points
    • [JS96]
    • [JS96] À. Jorba and C. Simó. On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27(6) (1996), 1704-1737.
    • (1996) SIAM J. Math. Anal. , vol.27 , Issue.6 , pp. 1704-1737
    • Jorba, À.1    Simó, C.2
  • 29
    • 0000500437 scopus 로고    scopus 로고
    • On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations
    • [JV97]
    • [JV97] À. Jorba and J. Villanueva. On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. 7(5) (1997), 427-473.
    • (1997) J. Nonlinear Sci. , vol.7 , Issue.5 , pp. 427-473
    • Jorba, À.1    Villanueva, J.2
  • 30
    • 33645057969 scopus 로고
    • Linear prolongations of dynamical systems, and the problem of reducibility
    • [Kat70]
    • [Kat70] S. B. Katok. Linear prolongations of dynamical systems, and the problem of reducibility. Mat. Zametki 8 (1970), 451-462.
    • (1970) Mat. Zametki , vol.8 , pp. 451-462
    • Katok, S.B.1
  • 31
    • 9444266308 scopus 로고    scopus 로고
    • Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts
    • [Kri99a]
    • [Kri99a] R. Krikorian. Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts. Astérisque 259 (1999).
    • (1999) Astérisque , vol.259
    • Krikorian, R.1
  • 32
    • 0033099426 scopus 로고    scopus 로고
    • Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans les groupes compacts
    • [Kri99b]
    • [Kri99b] R. Krikorian. Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans les groupes compacts. Ann. Sci. École Norm. Sup. 32 (1999), 187-240.
    • (1999) Ann. Sci. École Norm. Sup. , vol.32 , pp. 187-240
    • Krikorian, R.1
  • 33
    • 0347123462 scopus 로고    scopus 로고
    • Random versus deterministic exponents in a rich family of diffeomorphisms
    • [LSSW03]
    • [LSSW03] F. Ledrappier, M. Shub, C. Simó and A. Wilkinson. Random versus deterministic exponents in a rich family of diffeomorphisms. J. Stat. Phys. 113 (2003), 85-149.
    • (2003) J. Stat. Phys. , vol.113 , pp. 85-149
    • Ledrappier, F.1    Shub, M.2    Simó, C.3    Wilkinson, A.4
  • 34
    • 33645074722 scopus 로고    scopus 로고
    • Stability of homographic solutions of the planar three-body problem with homogeneous potentials
    • [MSS03]. Eds F. Dumortier et al. World Scientific
    • [MSS03] R. Martínez, A. Samà and C. Simó. Stability of homographic solutions of the planar three-body problem with homogeneous potentials. Proceedings Equadiff03. Eds F. Dumortier et al. World Scientific, 2005, pp. 856-861.
    • (2005) Proceedings Equadiff03 , pp. 856-861
    • Martínez, R.1    Samà, A.2    Simó, C.3
  • 35
    • 33645080970 scopus 로고    scopus 로고
    • Stability diagram for 4D linear periodic systems with applications to homographic solutions
    • [MSS06], in press
    • [MSS06] R. Martínez, A. Samà and C. Simó. Stability diagram for 4D linear periodic systems with applications to homographic solutions. J. Diff. Eq. (2006), in press.
    • (2006) J. Diff. Eq.
    • Martínez, R.1    Samà, A.2    Simó, C.3
  • 36
    • 3042570326 scopus 로고
    • Convergent series expansions for quasi-periodic motions
    • [Mos67]
    • [Mos67] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann. 169 (1967), 136-176.
    • (1967) Math. Ann. , vol.169 , pp. 136-176
    • Moser, J.1
  • 37
    • 27844524325 scopus 로고    scopus 로고
    • Differential equations with almost periodic and conditionally periodic coefficients: Recurrence and reducibility
    • [Mos98]
    • [Mos98] N. G. Moshchevitin. Differential equations with almost periodic and conditionally periodic coefficients: recurrence and reducibility. Mat. Zametki 64(2) (1998), 229-237
    • (1998) Mat. Zametki , vol.64 , Issue.2 , pp. 229-237
    • Moshchevitin, N.G.1
  • 38
    • 29344441024 scopus 로고    scopus 로고
    • (Engl. Transl. Math. Notes 64(1-2) (1998), 194-201).
    • (1998) Math. Notes , vol.64 , Issue.1-2 , pp. 194-201
  • 39
    • 51249180848 scopus 로고
    • An extension of a result by Dinaburg and Sinai on quasi-periodic potentials
    • [MP84]
    • [MP84] J. Moser and J. Pöschel. An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helvetici 59 (1984), 39-85.
    • (1984) Comment. Math. Helvetici , vol.59 , pp. 39-85
    • Moser, J.1    Pöschel, J.2
  • 40
    • 0003653890 scopus 로고
    • [MW79]. Dover, New York, (corrected reprint of the 1966 edition)
    • [MW79] W. Magnus and S. Winkler. Hill's Equation. Dover, New York, 1979 (corrected reprint of the 1966 edition).
    • (1979) Hill's Equation
    • Magnus, W.1    Winkler, S.2
  • 42
    • 0842346768 scopus 로고    scopus 로고
    • Cantor spectrum for the Almost Mathieu operator
    • [Pui04]
    • [Pui04] J. Puig. Cantor spectrum for the Almost Mathieu operator. Comm. Math. Phys. 244(2) (2004), 297-309.
    • (2004) Comm. Math. Phys. , vol.244 , Issue.2 , pp. 297-309
    • Puig, J.1
  • 44
    • 0001471315 scopus 로고
    • Almost periodic Schrödinger operators: A review
    • [Sim82]
    • [Sim82] B. Simon. Almost periodic Schrödinger operators: a review. Adv. Appl. Math. 3(4) (1982), 463-490.
    • (1982) Adv. Appl. Math. , vol.3 , Issue.4 , pp. 463-490
    • Simon, B.1
  • 45
    • 0000236174 scopus 로고
    • Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials
    • [Sok85]
    • [Sok85] J. B. Sokoloff. Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials. Phys. Rep. 126(4) (1985), 189-244.
    • (1985) Phys. Rep. , vol.126 , Issue.4 , pp. 189-244
    • Sokoloff, J.B.1
  • 46
    • 49349126301 scopus 로고
    • A spectral theory for linear differential systems
    • [SS78]
    • [SS78] R. J. Sacker and G. R. Sell. A spectral theory for linear differential systems. J. Diff. Eq. 27 (1978), 320-358.
    • (1978) J. Diff. Eq. , vol.27 , pp. 320-358
    • Sacker, R.J.1    Sell, G.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.