메뉴 건너뛰기




Volumn 34, Issue 3, 2006, Pages 991-1041

Non-Abelian extensions of topological lie algebras

Author keywords

Curvature; Gerbe; Lie algebra extensions; Non abelian cohomology; Principal bundle

Indexed keywords


EID: 33645062411     PISSN: 00927872     EISSN: 15324125     Source Type: Journal    
DOI: 10.1080/00927870500441973     Document Type: Article
Times cited : (32)

References (24)
  • 7
    • 33645059860 scopus 로고
    • Extensions of Lie algebras and the third cohomology group
    • Goldberg, S. I. (1953). Extensions of Lie algebras and the third cohomology group. Can. J. Math. 5:470-476.
    • (1953) Can. J. Math. , vol.5 , pp. 470-476
    • Goldberg, S.I.1
  • 8
    • 0007105859 scopus 로고
    • Lie algebra kernels and cohomology
    • Hochschild, G. (1954a). Lie algebra kernels and cohomology. Amer. J. Math. 76:698-716.
    • (1954) Amer. J. Math. , vol.76 , pp. 698-716
    • Hochschild, G.1
  • 9
    • 0042760096 scopus 로고
    • Cohomology classes of finite type and finite-dimensional kernels for Lie algebras
    • Hochschild, G. (1954b). Cohomology classes of finite type and finite-dimensional kernels for Lie algebras. Amer. J. Math. 76:763-778.
    • (1954) Amer. J. Math. , vol.76 , pp. 763-778
    • Hochschild, G.1
  • 11
    • 0001363446 scopus 로고
    • Cohomology of Lie algebras
    • Hochschild, G., Serre, J.-P. (1953b). Cohomology of Lie algebras. Ann. Math. 57(2):591-603.
    • (1953) Ann. Math. , vol.57 , Issue.2 , pp. 591-603
    • Hochschild, G.1    Serre, J.-P.2
  • 13
    • 12744256527 scopus 로고
    • Sur la suite exacte canonique associée à un fibré principal
    • Lecomte, P. (1985). Sur la suite exacte canonique associée à un fibré principal. Bull Soc. Math. Fr. 13:259-271.
    • (1985) Bull Soc. Math. Fr. , vol.13 , pp. 259-271
    • Lecomte, P.1
  • 14
    • 0442268134 scopus 로고
    • On some sequence of graded Lie algebras associated to manifolds
    • Lecomte, P. (1994). On some sequence of graded Lie algebras associated to manifolds. Ann. Global Analysis Geom. 12:183-192.
    • (1994) Ann. Global Analysis Geom. , vol.12 , pp. 183-192
    • Lecomte, P.1
  • 16
    • 84972506654 scopus 로고
    • On the three-dimensional cohomology groups of Lie algebras
    • Mori, M. (1953). On the three-dimensional cohomology groups of Lie algebras. J. Math. Soc. Japan 5(2):171-183.
    • (1953) J. Math. Soc. Japan , vol.5 , Issue.2 , pp. 171-183
    • Mori, M.1
  • 17
    • 0038168011 scopus 로고    scopus 로고
    • Central extensions of infinite-dimensional Lie groups
    • Neeb, K.-H. (2002). Central extensions of infinite-dimensional Lie groups. Annales de l'Inst. Fourier 52(5):1365-1442.
    • (2002) Annales de l'Inst. Fourier , vol.52 , Issue.5 , pp. 1365-1442
    • Neeb, K.-H.1
  • 18
    • 33645067555 scopus 로고    scopus 로고
    • Abelian extensions of infinite-dimensional Lie groups
    • Neeb, K.-H. (2004a). Abelian extensions of infinite-dimensional Lie groups. Travaux Math. 15:69-194.
    • (2004) Travaux Math. , vol.15 , pp. 69-194
    • Neeb, K.-H.1
  • 20
    • 4344664327 scopus 로고    scopus 로고
    • Extensions of Banach Lie-Poisson spaces
    • Odzijewicz, A., Ratiu, T. S. (2004). Extensions of Banach Lie-Poisson spaces. J. Funct. Anal. 217(1):103-125.
    • (2004) J. Funct. Anal. , vol.217 , Issue.1 , pp. 103-125
    • Odzijewicz, A.1    Ratiu, T.S.2
  • 22
    • 84972531410 scopus 로고
    • A cohomology for Lie algebras
    • Shukla, U. (1966). A cohomology for Lie algebras. J. Math. Soc. Japan 18(3):275-289.
    • (1966) J. Math. Soc. Japan , vol.18 , Issue.3 , pp. 275-289
    • Shukla, U.1
  • 23
    • 33645060110 scopus 로고    scopus 로고
    • Lie algebra crossed modules
    • To appear
    • Wagemann, F. Lie algebra crossed modules. Comm. in Algebra. To appear.
    • Comm. in Algebra
    • Wagemann, F.1
  • 24
    • 0003646906 scopus 로고
    • Cambridge studies in advanced math. 38. Cambridge: Cambridge Univ. Press
    • Weibel, C. A. (1995). An Introduction to Homological Algebra. Cambridge studies in advanced math. 38. Cambridge: Cambridge Univ. Press.
    • (1995) An Introduction to Homological Algebra
    • Weibel, C.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.