메뉴 건너뛰기




Volumn 62, Issue 1, 2006, Pages 168-176

A hybrid model for nonignorable dropout in longitudinal binary responses

Author keywords

Binary data; Dropout; Longitudinal method; Missing data; Nonignorable

Indexed keywords

BINARY DATA; BINARY RESPONSE; COVARIATES; DROPOUT; HYBRID MODEL; LONGITUDINAL METHODS; LONGITUDINAL STUDY; MARGINAL DISTRIBUTION; MISSING DATA; NONIGNORABLE;

EID: 33645051192     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2005.00402.x     Document Type: Article
Times cited : (9)

References (31)
  • 1
    • 0002671486 scopus 로고
    • Logistic regression for autocorrelated data with application to repeated measures
    • Azzalini A. 1994 Logistic regression for autocorrelated data with application to repeated measures Biometrika 81 767 775
    • (1994) Biometrika , vol.81 , pp. 767-775
    • Azzalini, A.1
  • 2
    • 0029098494 scopus 로고
    • Marginal regression for repeated binary data with outcome subject to non-ignorable non-response
    • Baker S. G. 1995 Marginal regression for repeated binary data with outcome subject to non-ignorable non-response Biometrics 51 1042 1052
    • (1995) Biometrics , vol.51 , pp. 1042-1052
    • Baker, S.G.1
  • 3
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to nonignorable nonresponse
    • and
    • Baker S. G. and Laird N. M. 1988 Regression analysis for categorical variables with outcome subject to nonignorable nonresponse Journal of the American Statistical Association 83 62 69
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 4
    • 0141767039 scopus 로고    scopus 로고
    • A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey
    • and
    • Baker S. G. Ko C.-W. and Graubard B. I. 2003 A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey Biostatistics 4 41 56
    • (2003) Biostatistics , vol.4 , pp. 41-56
    • Baker, S.G.1    Ko, C.-W.2    Graubard, B.I.3
  • 5
    • 0036971533 scopus 로고    scopus 로고
    • A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse
    • and
    • Birmingham J. and Fitzmaurice G. M. 2002 A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse Biometrics 58 989 996
    • (2002) Biometrics , vol.58 , pp. 989-996
    • Birmingham, J.1    Fitzmaurice, G.M.2
  • 7
    • 0442309561 scopus 로고    scopus 로고
    • A method-of-moments estimation procedure for categorical quality-of-life data with nonignorable missingness
    • and
    • Bonetti M. Cole B. F. and Gelber R. D. 1999 A method-of-moments estimation procedure for categorical quality-of-life data with nonignorable missingness Journal of the American Statistical Association 94 1025 1034
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1025-1034
    • Bonetti, M.1    Cole, B.F.2    Gelber, R.D.3
  • 9
    • 21144479548 scopus 로고
    • Non-ignorable non-response models for time-ordered categorical variables
    • Conaway M. R. 1993 Non-ignorable non-response models for time-ordered categorical variables Applied Statistics 42 105 115
    • (1993) Applied Statistics , vol.42 , pp. 105-115
    • Conaway, M.R.1
  • 10
    • 0000695960 scopus 로고
    • On a least squares adjustment of a sampled frequency table when the expected marginal totals are known
    • and
    • Deming W. E. and Stephan F. F. 1940 On a least squares adjustment of a sampled frequency table when the expected marginal totals are known Annals of Mathematical Statistics 11 427 444
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 427-444
    • Deming, W.E.1    Stephan, F.F.2
  • 12
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children's obesity data reanalysed using pattern mixture models
    • and
    • Ekholm A. and Skinner C. 1998 The Muscatine children's obesity data reanalysed using pattern mixture models Applied Statistics 47 251 263
    • (1998) Applied Statistics , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 13
    • 0001708275 scopus 로고
    • A likelihood-based method for analysing longitudinal binary responses
    • and
    • Fitzmaurice G. M. and Laird N. M. 1993 A likelihood-based method for analysing longitudinal binary responses Biometrika 80 141 151
    • (1993) Biometrika , vol.80 , pp. 141-151
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 14
    • 0001216089 scopus 로고    scopus 로고
    • Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies
    • and
    • Fitzmaurice G. M. and Laird N. M. 2000 Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies Biostatistics 1 141 156
    • (2000) Biostatistics , vol.1 , pp. 141-156
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 17
    • 33748702682 scopus 로고    scopus 로고
    • On identifiability in models for incomplete binary data
    • Glonek G. F. V. 1999 On identifiability in models for incomplete binary data Statistics and Probability Letters 41 191 197
    • (1999) Statistics and Probability Letters , vol.41 , pp. 191-197
    • Glonek, G.F.V.1
  • 18
    • 0032887209 scopus 로고    scopus 로고
    • Marginally specified logistic-normal models for longitudinal binary data
    • Heagerty P. J. 1999 Marginally specified logistic-normal models for longitudinal binary data Biometrics 55 688 698
    • (1999) Biometrics , vol.55 , pp. 688-698
    • Heagerty, P.J.1
  • 19
    • 0035989803 scopus 로고    scopus 로고
    • Marginalized transition models and likelihood inference for longitudinal categorical data
    • Heagerty P. J. 2002 Marginalized transition models and likelihood inference for longitudinal categorical data Biometrics 58 342 351
    • (2002) Biometrics , vol.58 , pp. 342-351
    • Heagerty, P.J.1
  • 20
    • 0001780119 scopus 로고    scopus 로고
    • Marginalized multilevel models and likelihood inference
    • and
    • Heagerty P. J. and Zeger S. L. 2000 Marginalized multilevel models and likelihood inference Statistical Science 15 1 26
    • (2000) Statistical Science , vol.15 , pp. 1-26
    • Heagerty, P.J.1    Zeger, S.L.2
  • 21
    • 0023716933 scopus 로고
    • Missing data in longitudinal studies
    • Laird N. M. 1988 Missing data in longitudinal studies Statistics in Medicine 7 305 315
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 26
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with nonrandom drop-out
    • and
    • Molenberghs G. Kenward M. G. and Lesaffre E. 1997 The analysis of longitudinal ordinal data with nonrandom drop-out Biometrika 84 33 44
    • (1997) Biometrika , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 27
    • 0031014354 scopus 로고    scopus 로고
    • Analysis of semi-parametric regression models with non-ignorable non-response
    • and
    • Rotnitzky A. and Robins J. M. 1997 Analysis of semi-parametric regression models with non-ignorable non-response Statistics in Medicine 16 81 102
    • (1997) Statistics in Medicine , vol.16 , pp. 81-102
    • Rotnitzky, A.1    Robins, J.M.2
  • 28
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D. B. 1976 Inference and missing data Biometrika 63 581 592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 29
    • 0000672899 scopus 로고
    • Extensions of estimation methods using the EM algorithm
    • Ruud P. A. 1991 Extensions of estimation methods using the EM algorithm Journal of Econometrics 49 305 341
    • (1991) Journal of Econometrics , vol.49 , pp. 305-341
    • Ruud, P.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.