메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 419-441

Distribution-invariant risk measures, information, and dynamic consistency

Author keywords

Capital requirement; Distribution invariant risk measures; Dynamic consistency; Dynamic risk measure; Measure convexity; Measure of risk; Shortfall risk; Utility functions

Indexed keywords


EID: 33644989881     PISSN: 09601627     EISSN: 14679965     Source Type: Journal    
DOI: 10.1111/j.1467-9965.2006.00277.x     Document Type: Article
Times cited : (185)

References (27)
  • 2
    • 17444365072 scopus 로고    scopus 로고
    • Coherent multiperiod risk adjusted values and bellman's principle
    • ETH Zürich
    • ARTZNER, P., F. DELBAEN, J.-M. EBER, D. HEATH, and H. KU (2003): Coherent Multiperiod Risk Adjusted Values and Bellman's Principle. Working paper, ETH Zürich.
    • (2003) Working Paper
    • Artzner, P.1    Delbaen, F.2    Eber, J.-M.3    Heath, D.4    Ku, H.5
  • 3
    • 0346317304 scopus 로고    scopus 로고
    • Core of convex distortions of a probability
    • CARLIER, G., and R.-A. DANA (2003): Core of Convex Distortions of a Probability, J. Econ. Theory 113, 199-222.
    • (2003) J. Econ. Theory , vol.113 , pp. 199-222
    • Carlier, G.1    Dana, R.-A.2
  • 4
    • 2542494958 scopus 로고    scopus 로고
    • Coherent and convex risk meaures for bounded càdlàg processes
    • CHERIDITO, P., F. DELBAEN, and M. KUPPER (2004a): Coherent and Convex Risk Meaures for Bounded càdlàg Processes, Stoch. Processes Appl. 112, 1-22.
    • (2004) Stoch. Processes Appl. , vol.112 , pp. 1-22
    • Cheridito, P.1    Delbaen, F.2    Kupper, M.3
  • 5
    • 24144449791 scopus 로고    scopus 로고
    • Dynamic monetary risk measures for bounded discrete-time processes
    • ETH Zürich
    • CHERIDITO, P., F. DELBAEN, and M. KUPPER (2004b): Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes. Working paper, ETH Zürich.
    • (2004) Working Paper
    • Cheridito, P.1    Delbaen, F.2    Kupper, M.3
  • 6
    • 21244441820 scopus 로고    scopus 로고
    • Coherent and convex risk meaures for unbounded càdlàg processes
    • CHERIDITO, P., F. DELBAEN, and M. KUPPER (2005): Coherent and Convex Risk Meaures for Unbounded càdlàg Processes. Finan. Stochastics, 9(3), 369-387.
    • (2005) Finan. Stochastics , vol.9 , Issue.3 , pp. 369-387
    • Cheridito, P.1    Delbaen, F.2    Kupper, M.3
  • 7
    • 0141822085 scopus 로고    scopus 로고
    • Coherent risk measures on general probability spaces
    • K. Sandmann and P. J. Schonbucher, eds. Berlin: Springer-Verlag
    • DELBAEN, F. (2002): Coherent Risk Measures on General Probability spaces, in Advances in Finance and Stochastics, K. Sandmann and P. J. Schonbucher, eds. Berlin: Springer-Verlag, 1-38.
    • (2002) Advances in Finance and Stochastics , pp. 1-38
    • Delbaen, F.1
  • 10
    • 0038551367 scopus 로고    scopus 로고
    • Convex measures of risk and trading constraints
    • FÖLLMER, H., and A. SCHIED (2002a): Convex Measures of Risk and Trading Constraints, Finance Stoch. 6(4), 429-448.
    • (2002) Finance Stoch. , vol.6 , Issue.4 , pp. 429-448
    • Föllmer, H.1    Schied, A.2
  • 11
    • 0142171471 scopus 로고    scopus 로고
    • Robust preferences and convex meaures of risk
    • K. Sandmann and P. J. Schönbucher, eds., Berlin: Springer-Verlag
    • FÖLLMER, H., and A. SCHIED (2002b): Robust Preferences and Convex Meaures of Risk, in Advances in Finance and Stochastics. K. Sandmann and P. J. Schönbucher, eds., Berlin: Springer-Verlag, 39-56.
    • (2002) Advances in Finance and Stochastics , pp. 39-56
    • Föllmer, H.1    Schied, A.2
  • 14
    • 84858562994 scopus 로고    scopus 로고
    • Convex risk measures and the dynamics of their penalty functions
    • Humboldt-Universität zu Berlin
    • FÖLLMER, H., and I. PENNER (2004): Convex Risk Measures and the Dynamics of Their Penalty Functions. Working paper, Humboldt-Universität zu Berlin.
    • (2004) Working Paper
    • Föllmer, H.1    Penner, I.2
  • 15
    • 0036076693 scopus 로고    scopus 로고
    • Putting order in risk measures
    • FRITTELLI, M., and G. E. ROSAZZA (2002): Putting Order in Risk Measures, J. Banking Finance 26(7), 1473-1486.
    • (2002) J. Banking Finance , vol.26 , Issue.7 , pp. 1473-1486
    • Frittelli, M.1    Rosazza, G.E.2
  • 16
    • 0142140757 scopus 로고    scopus 로고
    • Coherent risk measures and good-deal bounds
    • JASCHKE, S., and U. KÜCHLER (2001): Coherent Risk Measures and Good-Deal Bounds, Finance Stoch. 5(2), 181-200.
    • (2001) Finance Stoch. , vol.5 , Issue.2 , pp. 181-200
    • Jaschke, S.1    Küchler, U.2
  • 19
    • 0001862354 scopus 로고    scopus 로고
    • On law invariant coherent risk measures
    • KUSUOKA, S. (2001): On Law Invariant Coherent Risk Measures, Adv. Math. Econ. 3, 83-95.
    • (2001) Adv. Math. Econ. , vol.3 , pp. 83-95
    • Kusuoka, S.1
  • 21
    • 3242809849 scopus 로고    scopus 로고
    • Dynamic coherent risk measures
    • RIEDEL, F. (2004): Dynamic Coherent Risk Measures. Stock. Processes Appl. 112, 185-200.
    • (2004) Stock. Processes Appl. , vol.112 , pp. 185-200
    • Riedel, F.1
  • 22
    • 17944374757 scopus 로고    scopus 로고
    • Ph.D. Thesis, Università degli Studi Milano and Università di Firenze
    • SCANDOLO, G. (2003): Risk Measures in a Dynamic Setting. Ph.D. Thesis, Università degli Studi Milano and Università di Firenze.
    • (2003) Risk Measures in A Dynamic Setting
    • Scandolo, G.1
  • 23
    • 33644985748 scopus 로고    scopus 로고
    • A characterization of dynamic risk measures
    • U.B.C.
    • WANG, T. (1996): A Characterization of Dynamic Risk Measures. Working paper, U.B.C.
    • (1996) Working Paper
    • Wang, T.1
  • 24
    • 1642499051 scopus 로고    scopus 로고
    • A class of dynamic risk measures
    • U.B.C.
    • WANG, T. (1999): A Class of Dynamic Risk Measures. Working paper, U.B.C.
    • (1999) Working Paper
    • Wang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.