메뉴 건너뛰기




Volumn 64, Issue 11, 2006, Pages 2604-2618

Positive and negative hierarchies of nonlinear integrable lattice models and three integrable coupling systems associated with a discrete spectral problem

Author keywords

Discrete Hamiltonian structure; Integrable coupling; Nonlinear integrable lattice models; Zero curvature representation

Indexed keywords

MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; PARAMETER ESTIMATION; PROBLEM SOLVING;

EID: 33644951191     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.09.018     Document Type: Article
Times cited : (25)

References (24)
  • 1
    • 36749115552 scopus 로고
    • Nonlinear differential-difference equation
    • M. Ablowitz, and J. Ladik Nonlinear differential-difference equation J. Math. Phys. 16 1975 598 603
    • (1975) J. Math. Phys. , vol.16 , pp. 598-603
    • Ablowitz, M.1    Ladik, J.2
  • 2
    • 0002819613 scopus 로고
    • Integrable discretizations of the KdV equation
    • O.I. Bogoyavlensky Integrable discretizations of the KdV equation Phys. Lett. A 134 1988 34 38
    • (1988) Phys. Lett. A , vol.134 , pp. 34-38
    • Bogoyavlensky, O.I.1
  • 5
    • 17544403706 scopus 로고    scopus 로고
    • Enlarging spectral problems to construct integrable couplings of soliton equations
    • W.X. Ma Enlarging spectral problems to construct integrable couplings of soliton equations Phys. Lett. A. 316 2003 72 76
    • (2003) Phys. Lett. A. , vol.316 , pp. 72-76
    • Ma, W.X.1
  • 6
    • 0000913370 scopus 로고    scopus 로고
    • Integrable theory of the perturbation equations
    • W.X. Ma, and B. Fuchssteiner Integrable theory of the perturbation equations Chaos Soliton Fractrals 7 1996 1227 1235
    • (1996) Chaos Soliton Fractrals , vol.7 , pp. 1227-1235
    • Ma, W.X.1    Fuchssteiner, B.2
  • 7
    • 0033438459 scopus 로고    scopus 로고
    • Algebraic structures of discrete zero curvature equations and master symmetries of discrete evolution equations
    • W.X. Ma, and B. Fuchssteiner Algebraic structures of discrete zero curvature equations and master symmetries of discrete evolution equations J. Math. Phys. 40 1999 2400 2418
    • (1999) J. Math. Phys. , vol.40 , pp. 2400-2418
    • Ma, W.X.1    Fuchssteiner, B.2
  • 8
    • 3543010236 scopus 로고    scopus 로고
    • Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair
    • W.X. Ma, and X.X. Xu Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair Int. J. Theor. Phys. 43 2004 219 236
    • (2004) Int. J. Theor. Phys. , vol.43 , pp. 219-236
    • Ma, W.X.1    Xu, X.X.2
  • 10
    • 0036971067 scopus 로고    scopus 로고
    • Soliton solutions for the coupled discrete KdV equations under nonvanishing boundary conditions at infinity
    • K. Narita Soliton solutions for the coupled discrete KdV equations under nonvanishing boundary conditions at infinity J. Phys. Soc. Jpn. 71 2002 2401 2405
    • (2002) J. Phys. Soc. Jpn. , vol.71 , pp. 2401-2405
    • Narita, K.1
  • 11
    • 0000842014 scopus 로고
    • Master symmetries and multi-Hamiltonian formulations for some integrable lattice systems
    • W. Oevel, H. Zhang, and B. Fuchssteiner Master symmetries and multi-Hamiltonian formulations for some integrable lattice systems Prog. Theor. Phys. 81 1989 294 308
    • (1989) Prog. Theor. Phys. , vol.81 , pp. 294-308
    • Oevel, W.1    Zhang, H.2    Fuchssteiner, B.3
  • 12
    • 85024298957 scopus 로고
    • A discrete KdV equation and its Casorati determinant solution
    • Y. Ohta, and R. Hirota A discrete KdV equation and its Casorati determinant solution J. Phys. Soc. Jpn. 60 1991 2059 2102
    • (1991) J. Phys. Soc. Jpn. , vol.60 , pp. 2059-2102
    • Ohta, Y.1    Hirota, R.2
  • 13
    • 36149031112 scopus 로고
    • A trace identity and its applications to the theory of discrete integrable systems
    • G.Z. Tu A trace identity and its applications to the theory of discrete integrable systems J. Phys. A: Math. Gen. 23 1990 3903 3922
    • (1990) J. Phys. A: Math. Gen. , vol.23 , pp. 3903-3922
    • Tu, G.Z.1
  • 14
    • 77952754614 scopus 로고
    • A generalization of the inverse scattering method
    • M. Wadati, K. Konno, and Y.H. Ichikawa A generalization of the inverse scattering method J. Phys. Soc. Jpn. 46 1979 1965 1966
    • (1979) J. Phys. Soc. Jpn. , vol.46 , pp. 1965-1966
    • Wadati, M.1    Konno, K.2    Ichikawa, Y.H.3
  • 15
    • 0001475553 scopus 로고
    • Relationships among inverse method, Bäcklund transformation and infinite number of conservation laws
    • M. Wadati, H. Sanuki, and K. Konno Relationships among inverse method, Bäcklund transformation and infinite number of conservation laws Prog. Theor. Phys. 53 1975 419 436
    • (1975) Prog. Theor. Phys. , vol.53 , pp. 419-436
    • Wadati, M.1    Sanuki, H.2    Konno, K.3
  • 16
    • 0030527731 scopus 로고    scopus 로고
    • A new integrable symplectic map associated with lattice equations
    • Y.T. Wu, and X.G. Geng A new integrable symplectic map associated with lattice equations J. Math. Phys. 37 1996 2338 2345
    • (1996) J. Math. Phys. , vol.37 , pp. 2338-2345
    • Wu, Y.T.1    Geng, X.G.2
  • 17
    • 0032566479 scopus 로고    scopus 로고
    • A new hierarchy integrable differential-difference equations and Darboux transformation
    • Y.T. Wu, and X.G. Geng A new hierarchy integrable differential-difference equations and Darboux transformation J. Phys. A: Math. Gen. 31 1998 L677 L684
    • (1998) J. Phys. A: Math. Gen. , vol.31
    • Wu, Y.T.1    Geng, X.G.2
  • 18
    • 16344376927 scopus 로고    scopus 로고
    • Factorization of a hierarchy of the lattice soliton equations from a binary Bargmann symmetry constraint
    • X.X. Xu Factorization of a hierarchy of the lattice soliton equations from a binary Bargmann symmetry constraint Nonlinear Anal. 61 2005 1225 1240
    • (2005) Nonlinear Anal. , vol.61 , pp. 1225-1240
    • Xu, X.X.1
  • 19
    • 0036882946 scopus 로고    scopus 로고
    • A hierarchy of integrable nonlinear lattice equations and new integrable symplectic map
    • X.X. Xu, and H.H. Dong A hierarchy of integrable nonlinear lattice equations and new integrable symplectic map Commun. Theor. Phys. 38 2002 523 528
    • (2002) Commun. Theor. Phys. , vol.38 , pp. 523-528
    • Xu, X.X.1    Dong, H.H.2
  • 20
    • 24344497585 scopus 로고    scopus 로고
    • A hierarchy of discrete generalized Hamiltonian systems and a new integrable symplectic map
    • X.X. Xu, and S.F. Wang A hierarchy of discrete generalized Hamiltonian systems and a new integrable symplectic map Acta. Math. Sci. A 23 2003 298 305
    • (2003) Acta. Math. Sci. A , vol.23 , pp. 298-305
    • Xu, X.X.1    Wang, S.F.2
  • 21
    • 1842534554 scopus 로고    scopus 로고
    • A hierarchy of Lax integrable lattice equations, Liouville integrability and a new integrable symplectic map
    • X.X. Xu, and Y.F. Zhang A hierarchy of Lax integrable lattice equations, Liouville integrability and a new integrable symplectic map Commun. Theor. Phys. 41 2004 321 328
    • (2004) Commun. Theor. Phys. , vol.41 , pp. 321-328
    • Xu, X.X.1    Zhang, Y.F.2
  • 22
    • 0037162859 scopus 로고    scopus 로고
    • Hamiltonian structure of discrete soliton systems
    • D.J. Zhang, and D.Y. Chen Hamiltonian structure of discrete soliton systems J. Phys. A: Math. Gen. 35 2002 7225 7241
    • (2002) J. Phys. A: Math. Gen. , vol.35 , pp. 7225-7241
    • Zhang, D.J.1    Chen, D.Y.2
  • 23
    • 0036722191 scopus 로고    scopus 로고
    • The conservation laws of some discrete soliton systems
    • D.J. Zhang, and D.Y. Chen The conservation laws of some discrete soliton systems Chaos Soliton Fractrals 14 2002 573 578
    • (2002) Chaos Soliton Fractrals , vol.14 , pp. 573-578
    • Zhang, D.J.1    Chen, D.Y.2
  • 24
    • 36449007071 scopus 로고
    • Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure
    • H.W. Zhang, G.Z. Tu, W. Oevel, and B. Fuchssteiner Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure J. Math. Phys. 32 1991 1908 1918
    • (1991) J. Math. Phys. , vol.32 , pp. 1908-1918
    • Zhang, H.W.1    Tu, G.Z.2    Oevel, W.3    Fuchssteiner, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.